
Advanced Computer Architecture

Thread Programming
Antoine Trouvé

2015/06/01

Your very first useful
program with Pthreads

Edge Detection Program

3

Principle

4
Source: http://stats.stackexchange.com/questions/114385/what-is-the-difference-between-convolutional-neural-networks-restricted-boltzma

Case of a 3×3
matrix

http://stats.stackexchange.com/questions/114385/what-is-the-difference-between-convolutional-neural-networks-restricted-boltzma

The Files

• The files are under http://trouve.sakura.ne.jp/
aca/img_kernel.step1
• bmp.h: prototypes of the utility functions
• bmp.c: implementation of the utility functions
• img_kernel.step1.c: the main function

5

You can download a file from Linux
command line with wget.

Edge Detection Program
Flow (in img_kernel.c)

Read the image file (format bmp)

Creates a buffer image

Apply a convolution matrix (3×3)

Saves the image

6

read_bmp()

variables new_data and data
(defined in bmp.h)

apply_kernel_33() for 3×3 matrix

write_bmp()

How to Read/Write the
Image File

Header (54 bytes)

Pixels
(row major)

Format “bmp”

Red
8 bits

Pixel (32 bits)
Green
8 bits

Blue
8 bits

void
8 bits

7

Always 0 in my
images

Read: read_BMP()
Write: write_and_free_BMP()

In variable data

In variable info

The Serial Version
of the Program

8

img_kernel.step1.c

#include "./bmp.h"

/* Edge detection */
double edge_kernel_matrix[3][3] = {
 {-1, -1, -1},
 {-1, 8, -1},
 {-1, -1, -1}
};

/* Identity */
double id_kernel_matrix[3][3] = {
 {0, 0, 0},
 {0, 1, 0},
 {0, 0, 0}
};

/* blur */
double blur_kernel_matrix[5][5] = {
 {1.0/273.0, 4.0/273.0, 7.0/273.0, 4.0/273.0, 1.0/273.0},
 {4.0/273.0, 16.0/273.0, 26.0/273.0, 16.0/273.0, 4.0/273.0},
 {7.0/273.0, 26.0/273.0, 41.0/273.0, 26.0/273.0, 7.0/273.0},
 {4.0/273.0, 16.0/273.0, 26.0/273.0, 16.0/273.0, 4.0/273.0},
 {1.0/273.0, 4.0/273.0, 7.0/273.0, 4.0/273.0, 1.0/273.0}
};

int main(int argc, char* argv[]) {
 if(argc!=3) { printf("Please specify the names of the input and output files in parameters:\n\t %s
<input.bmp> <output.bmp>\n", argv[0]); exit(-1); }

 printf("Reads the file %s ...\n", argv[1]);

 unsigned char info[54];
 /* Reads the file and allocates the data in the heap */
 data = read_bmp(argv[1], info);

 if(data==NULL) { printf("Unable to open the file. Exit...\n"); return -1; }

 /* Does some stuff */
 printf("Applies the kernel ...\n");

 // extracts image height and width from header
 int width = BMP_WIDTH(info);
 int height = BMP_HEIGHT(info);

 new_data = malloc(width*height*sizeof(bmp_pixel_t));

 applyMatrix_33((unsigned char*)BMP_PIXEL(data,0,1,width), (unsigned char*)BMP_PIXEL(new_data,
0,1,width), width, height-1, edge_kernel_matrix);

 printf("Writes the output file in %s ...", argv[2]);

 /* Writes the BMP to a file and frees the data from the heap */
 if(write_bmp(argv[2], new_data, info)==-1) {
 printf("Unable to write the file. Exit...\n"); return -1;
 }

 free(data);
 free(mew_data);

 return 0;
}

The main function
only

The Serial Version
of the Program

9

#include "./bmp.h"

/* Edge detection */
double edge_kernel_matrix[3][3] = {
 {-1, -1, -1},
 {-1, 8, -1},
 {-1, -1, -1}
};

/* Identity */
double id_kernel_matrix[3][3] = {
 {0, 0, 0},
 {0, 1, 0},
 {0, 0, 0}
};

/* blur */
double blur_kernel_matrix[5][5] = {
 {1.0/273.0, 4.0/273.0, 7.0/273.0, 4.0/273.0, 1.0/273.0},
 {4.0/273.0, 16.0/273.0, 26.0/273.0, 16.0/273.0, 4.0/273.0},
 {7.0/273.0, 26.0/273.0, 41.0/273.0, 26.0/273.0, 7.0/273.0},
 {4.0/273.0, 16.0/273.0, 26.0/273.0, 16.0/273.0, 4.0/273.0},
 {1.0/273.0, 4.0/273.0, 7.0/273.0, 4.0/273.0, 1.0/273.0}
};

int main(int argc, char* argv[]) {
 if(argc!=3) { printf("Please specify the names of the input and output files in parameters:\n\t %s
<input.bmp> <output.bmp>\n", argv[0]); exit(-1); }

 printf("Reads the file %s ...\n", argv[1]);

 unsigned char info[54];
 /* Reads the file and allocates the data in the heap */
 unsigned char* data = read_BMP(argv[1], info);

 if(data==NULL) { printf("Unable to open the file. Exit...\n"); return -1; }

 /* Does some stuff */
 printf("Applies the kernel ...\n");

 // extracts image height and width from header
 int width = BMP_WIDTH(info);
 int height = BMP_HEIGHT(info);

 unsigned char* new_data = malloc(width*height*sizeof(bmp_pixel_t));

 applyMatrix_33((unsigned char*)BMP_PIXEL(data,0,1,width), (unsigned char*)BMP_PIXEL(new_data,
0,1,width), width, height-1, edge_kernel_matrix);

 printf("Writes the output file in %s ...", argv[2]);

 /* Writes the BMP to a file and frees the data from the heap */
 if(write_and_free_BMP(argv[2], new_data, info)==-1) {
 printf("Unable to write the file. Exit...\n"); return -1;
 }

 free(data);

 return 0;
}

Pre-defined kernel
matrix

Reads the bmp file
Creates a new
image buffer

Applies the matrix

Writes the output
file and frees data

img_kernel.c

Compile / Link / Execute

$> gcc img_kernel.step1.c bmp.c -lpthread —o img_kernel.step1.out

① Compile and link the program

$> ./img_kernel.step1.out ~/examples/img/afghan.bmp afghan.out.bmp

② Execute

10

afghan.bmp afghan.out.bmp

You can use a smaller image if the network is slow:
http://trouve.sakura.ne.jp/aca/afghan.small.bmp

http://trouve.sakura.ne.jp/aca/afghan.small.bmp

Exercise 1

• Compile and execute the program. Try with
afghan.bmp.

• Try with other matrices, maybe your own !

11

Exercise 2
• Modify the program so that it applies function

remove_red before edge detection. Call it
img_kernel.step2

12

void remove_red(
 int width,
 int height,
 int starty);

The width/height of
the image

From which line to
start to apply the
filter (0 for now)

Check your output

Before After

Hint for Exercise 2

14

Memory

data

new_data

① Remove
red

② Edge
Detection

Memory

data

new_data

① Remove
red

② Edge
Detection

Be sure to alternate the
pixels you modify

Note:
It is possible to interchange
the values of a and b with
t=a; a=b; b=t;

Let us Parallelize it

Reminder of a Simple
Pthread Program

#include<stdio.h> // printf()
#include<unistd.h> // sleep()
#include<string.h> // strerror(char*)
#include<pthread.h>

void* doSomeThing(void *arg)
{
 return NULL;
}

int main(void)
{
 int err;
 pthread_t thread;

 err = pthread_create(&thread, NULL, &doSomeThing, NULL);
 if (err != 0) {
 printf("\ncan't create thread :[%s]\n", strerror(err));
 }

pthread_join(thread, NULL);

 return 0;
}

Create a variable to store
information about the thread

Creates a thread, executing a
given function

Wait for the child thread to
finish

Affect a Rank to Thread
• It is common to affect a
number to threads in order to
identify them
• We call it the rank of a
thread

• In pthread, there is no
automatic way to get the rank
of a thread

• You can do it manually in
pthread by passing arguments
to the thread function

void* do_thread(void* arg) {
 unitptr_t tid = (int)arg;
 […]
 return NULL;
}

int main(void) {
 pthread_t thread;
 unitptr_t tid=0;
 pthread_create(
 &thread,
 NULL,
 &doSomeThing,
 (void*)tid);
 […]
 return 0;
}

17

I use unitptrt_t, it could be int

About Measuring Execution Time

• One of the major motivation for parallelization is
performance improvement:

• There are two ways to measure execution time
• Wall clock time: the actual time spent
• CPU time: the amount of time the CPU was actually
making calculations. If threads are used, sums up all the
time spent in all threads

• We are interested in wall clock time.

18

Measuring Execution Time
in Linux

19

$> time ./img_kernel.step3.out ~/examples/img/afghan.bmp afghan.out.bmp

Add time before the
command to measure

real 0m0.722s
user 0m1.326s
sys 0m0.032s

Wall clock time

CPU time

Exercise 3

• Modify the program so that it executes
with two worker threads. Use data-
parallelism. Call it img_kernel.step3

• Is it faster than img_kernel.step2 ?

20

Worker 1

Worker 2

Note:
・A possibility for thread to share
variables is to use globals.
・Don’t worry too much about artifacts

You can get step2 from http://trouve.sakura.ne.jp/
aca/img_kernel.step2 if you’re not confident with yours

Who gets That ?

21

If you don’t, force a thread to
wait a little with a sleep()

Who gets That ?

22

If you don’t, force a thread to
wait a little with a sleep()

Global variable mess

Race condition

+

Global Variable Mess
void* do_thread(void* arg) {
 uintptr_t tid = (int)arg;

 int theight = height/nb_threads;
 int starty = theight*tid+1;
 if(tid==nb_threads-1) { theight -= 2; }

 remove_red(width, theight, starty);

 tmp_data = new_data;
 new_data = data;
 data = tmp_data;

 applyMatrix_33(width, theight, starty, edge_kernel_matrix);

 return NULL;
}

Modify global
pointers inside
the thread

23

Shared memory

Reminder: The memory
Model

thread function 1

Local variables

Global / Static Variables

thread function 2

Local variables

• All threads share the same
memory space

• All threads can access
• The global variables
• The memory dynamically
allocated

• The can even access other
thread’s stack with pointers
• This is often not a good
idea

24

25

• The problem
• All threads share the global variables
• Any modification in one thread impacts
the other ones

• In our example
• Both threads share data and new_data
• Both threads invert data and
new_data, that is, we invert two times

• Possible fix
• Only invert once
• Use local variables

data=0x10000
new_data=0x20000

data=0x20000
new_data=0x10000

Global Variable Mess

data=0x10000
new_data=0x20000

Thread 0
inverts

Thread 1
inverts

We use this one

 remove_red(…);

 if(tmp_data!=data) {
 tmp_data = new_data;
 new_data = data;
 data = tmp_data;
 }

 applyMatrix_33(…);

 remove_red(…);

 tmp_data = new_data;
 new_data = data;
 data = tmp_data;

 applyMatrix_33(…);

26

But the output is still strange…

Modify img_kernel.step3.c so that it only
inverts the variables once

Exercise

Race Condition

• A race might condition occurs when one thread
writes a data read by another one

• If we do not use any synchronization, we do not
know in which order the read / write occurs

27

 remove_red(…);

 tmp_data = new_data;

 data = tmp_data;

 data = tmp_data;

 applyMatrix_33(…);
 remove_red(…);

 applyMatrix_33(…);

time

Example of Race Condition

28

Thread 0 Thread 1
At this point
- thread 0 has modified data
- thread 1 is still running
remove_red

In this time segment,
remove_red is reading from
the wrong data buffer: this is
why you get the black bar.

Thread
Synchronization

What is Thread
Synchronization

30

• A pool of techniques to control the order in
which instructions in threads are executed

• We will look at two kinds of synchronization
• Critical sections
• Barriers

• Those are often implemented using
• Mutex
• Semaphore

Critical Sections
• Critical sections make sure that
at any time, at most one instance
of a given code is under
execution

• Some also use the term atomic
sections

• There are no guarantee in which
order critical sections are
executes

• A critical section may execute
concurrently to a non-critical one

31

a = *b;
a = a+rand();
&b = a

thread 0 thread 1

a = *b;
a = a+rand();
&b = a

a = *b;
a = a+rand();
&b = a

a = *b;
a = a+rand();
&b = a

Critical sections
prevent overlap

Barrier
• A barrier is another method to
synchronize threads
• We say a thread ”hits” a barrier

• A barrier consists in making all
the threads wait at a given point
in the code

• There is no guarantee of the
order in which threads hit a
barrier

32

Mutual Exclusion Locks

33

• One can protect critical sections with mutual
exclusion lock, or mutex

• A mutex is a resource that should be
• Locked at the beginning of the critical section
• Unlocked at the end of it

• If a thread tries to reserve a mutex already
locked, it waits until it is unlocked

• Only the thread that locked a mutex can unlock
it

Protect a Critical Section
with a Mutex

 some code
 lock mutex
 some code
 unlock mutex

34

• Lock/unlock the mutex at the beginning/end
of the critical section

• Any thread that try to lock the mutex before
it unlock will have to wait

“Hidden” Race Condition

• The above is one line of C code
• It aims at affecting a different id (in myId) to threads
• We want myId to be different for each thread

• Problem:
• It is not atomic: two threads may end up with the
same value in myId.

int nextId = 0;

void* do_thread(void* arg) {
 int myId = nextId++;

[…]
}

read myId from memory at &nextId
myId = myId + 1
write myId to memory at &nextId

It is compiled in three
assembly instructions

This simple code
affects an id to a thread

35

Example: if two threads run this way

Thread 0 Thread 1
read myId from memory at &nextId

myId = myId + 1

write myId to memory at &nextId

read myId from memory at &nextId

myId = myId + 1

write myId to memory at &nextId

myId = 1

myId = 2

No problem

Example: but if two threads run this way

Thread 0 Thread 1
read myId from memory at &nextId

myId = myId + 1

write myId to memory at &nextId

read myId from memory at &nextId

myId = myId + 1

write myId to memory at &nextIdmyId = 1
myId = 1

The threads have the same value !

Thread 1 reads before
thread 0 writes !

Quizz
How would you use mutex to fix this code
so that all threads have a different myId ?

int nextId = 0;

void* do_thread(void* arg) {
 int myId = nextId++;

[…]
}

read myId from memory at &nextId
myId = myId + 1
write myId to memory at &nextId

38

()

Semaphore
• A semaphore is similar to a mutex

• They are resources that can be locked and
unlocked

• They allow to make thread to wait for
events

• However, there are differences
• They can be locked several times
• They can by unlocked by any thread, not
only the one that locked it

39

Principle of a Semaphore

40

• A semaphore contains a positive integer value
• The value is decreased upon lock
• The value is increased upon unlock
• When a thread tries to unlock a semaphore at 0, it
waits until some other thread unlocks it once.

• It possible to initialize it at any value, for example:
• 0. the semaphore needs to be unlocked
• 1. the semaphore can be locked once
• n. the semaphore can be locked n times
consecutively

Mutex in Pthread

41

• Mutex variable (stores state)

• Lock a mutex (or wait if already locked)

• Unlock a mutex

pthread_mutex_t mutex;

pthread_mutex_lock(&mutex);

pthread_mutex_unlock(&mutex);

Quizz
• How would you implement a barrier with a
mutex ?

42

Quizz (Solution)

43

int nb_threads = 2;
int barrier_count = 0;
pthread_mutex_t mutex;

void* do_thread(void* arg) {
 […]

 pthread_mutex_lock(&mutex);
 barrier_count++;
 pthread_mutex_unlock(&mutex);

 while(barrier_count!=nb_threads);
 […]
}

This is called busy wait

Count the number of
threads that hit the barrier

Wait until all the threads
have hit the barrier

Put in a critical
section !

Exercise

44

• Adds barriers to img_kernel.step3.c to make
it work. Call it img_kernel.step4.c

What you
should get

You need two
barriers

Problem with Busy Wait
int nb_threads = 2;
int barrier_count = 0;
pthread_mutex_t mutex;

void* do_thread(void* arg) {
 […]

 pthread_mutex_lock(&mutex);
 barrier_count++;
 pthread_mutex_unlock(&mutex);

 while(barrier_count!=nb_threads);
 […]
}

• The while loop keeps the
processor busy

• This approach can be
very inefficient if:
• The thread has to wait
for a long time

• Two threads are running
on the same processor

45

Semaphore in C

46

• Semaphore variable (stores state)

• Initialize a semaphore to n

• Lock a semaphore (or wait if already locked)

• Unlock a semaphore

sem_t sem;

sem_wait(&sem);

sem_post(&sem);

Semaphore are not part of Pthread.
On need to include “semaphore.h”

sem_init(&sem, 0, n);

- Waits for the semaphore to be ≠0
- Decrements it

- Decrements a semaphore

Quizz
• How would you implement a barrier with a
semaphore ?

47

Quizz (Solution)

48

int nb_threads = 2;
int barrier_count = 0;
pthread_mutex_t mutex;
sem_t semaphore;

sem_init(semaphore, 0, 0)

void* do_thread(void* arg) {
 […]

 pthread_mutex_lock(&mutex);
 if(barrier1_count==nb_threads-1) {
 pthread_mutex_unlock(&mutex);
 for(j=0;j<nb_threads-1; j++) { sem_post(&semaphore); }
 } else {
 barrier1_count++;
 pthread_mutex_unlock(&mutex);
 sem_wait(&semaphore);
 }

 […]
}

Quizz (Solution)

49

int nb_threads = 2;
int barrier_count = 0;
pthread_mutex_t mutex;
sem_t semaphore;

sem_init(semaphore, 0, 0)

void* do_thread(void* arg) {
 […]

 pthread_mutex_lock(&mutex);
 if(barrier1_count==nb_threads-1) {
 pthread_mutex_unlock(&mutex);
 for(j=0;j<nb_threads-1; j++) { sem_post(&semaphore); }
 } else {
 barrier1_count++;
 pthread_mutex_unlock(&mutex);
 sem_wait(&semaphore);
 }

 […]
}

② Initializes the
semaphore at 0 (locked)

① Variables:
- barrier_count: the number of threads that hit the barrier
- mutex: the mutex to protect read/write of barrier_count
- semaphore: the barrier

Quizz (Solution)

50

int nb_threads = 2;
int barrier_count = 0;
pthread_mutex_t mutex;
sem_t semaphore;

sem_init(semaphore, 0, 0)

void* do_thread(void* arg) {
 […]

 pthread_mutex_lock(&mutex);
 if(barrier1_count==nb_threads-1) {
 pthread_mutex_unlock(&mutex);
 for(j=0;j<nb_threads-1; j++) { sem_post(&semaphore); }
 } else {
 barrier1_count++;
 pthread_mutex_unlock(&mutex);
 sem_wait(&semaphore);
 }

 […]
}

③ Checks and update the barrier counter:
- protect with a mutex
- all threads have hit the barrier if barrier_count =
nb_threads-1 (in this case, do not update the counter)

Quizz (Solution)

51

int nb_threads = 2;
int barrier_count = 0;
pthread_mutex_t mutex;
sem_t semaphore;

sem_init(semaphore, 0, 0)

void* do_thread(void* arg) {
 […]

 pthread_mutex_lock(&mutex);
 if(barrier1_count==nb_threads-1) {
 pthread_mutex_unlock(&mutex);
 for(j=0;j<nb_threads-1; j++) { sem_post(&semaphore); }
 } else {
 barrier1_count++;
 pthread_mutex_unlock(&mutex);
 sem_wait(&semaphore);
 }

 […]
}

④ If not all threads have hit the barrier, wait for it
to be unlocked with a sem_post.
Note: sem_wait blocks because the semaphore
has been initialized to 0

Quizz (Solution)

52

int nb_threads = 2;
int barrier_count = 0;
pthread_mutex_t mutex;
sem_t semaphore;

sem_init(semaphore, 0, 0)

void* do_thread(void* arg) {
 […]

 pthread_mutex_lock(&mutex);
 if(barrier1_count==nb_threads-1) {
 pthread_mutex_unlock(&mutex);
 for(j=0;j<nb_threads-1; j++) { sem_post(&semaphore); }
 } else {
 barrier1_count++;
 pthread_mutex_unlock(&mutex);
 sem_wait(&semaphore);
 }

 […]
}

⑤ Releases the barrier. Need to release
it once for each waiting thread.

Exercise

53

• Modify img_kernel.step4.c to use a
semaphore instead of a busy wait. Call the
program img_kernel.step5.c.

Problems of Mutex /
Semaphores

Deadlock (Example)
• Let us consider this program

55

pthread_mutex_lock(&mutex1); pthread_mutex_lock(&mutex2);

pthread_mutex_lock(&mutex2); pthread_mutex_lock(&mutex1);

Thread 0 Thread 1
t=0

t=1

What happens ?

Deadlock (Example)
• Let us consider this program

56

pthread_mutex_lock(&mutex1); pthread_mutex_lock(&mutex2);

pthread_mutex_lock(&mutex2); pthread_mutex_lock(&mutex1);

Thread 0 Thread 1
t=0

t=1

Thread 0 waits
for thread 1

Thread 1 waits
for thread 0

Problem 1: Deadlock

• A dead lock occurs when two processes wait
for each other

• It results in both threads to wait forever

• Deadlocks are often very hard to detect in
programs

57

Exercise
• Implement a simple Pthread program that
creates a deadlock with two threads and two
mutex

58

Amdahl’s Law: the speedup of parallel program is limited by its
serial components. The speedup of a parallel program can be
calculated as:

Problem 2: Serialization
• Code protected by critical sections and barriers
cannot be executed in parallel anymore: they are serial

• This reduces the “amount of parallelism” of a program,
therefore, the performance

59

N: number of threads
P amount of the program that can
execute in parallel

http://ja.wikipedia.org/wiki/アムダールの法則

The more synchronisation, the
lower the parallel portion gets

Rule of the Thumb
• Avoid as most as possible any synchronization in
programs because:
• It reduces performance
• It raise the probability of bug

• Most of the time, it boils down to avoiding to write in
global variable

• A common mean to achieve this is to use local
variables
• Copy the content of global variables into local ones
• Modify the local ones only

• It is however not possible every time

61

Exercise

• Remove the need for any synchronization
from img_kernel.step5.c by using local
variables. Call it img_kernel.step6.c.

62

You will need to modify the functions
remove_red and apply_matrix33

Quizz

int nextId = 0;
pthread_mutex_t mutex;

void* do_thread(void* arg) {
 pthread_mutex_lock(&mutex);
 int myId = nextId++;
 pthread_mutex_unlock(&mutex);

[…]
}

• Is it possible to remove synchronization in the
code below ?

63

Simple Threading
with OpenMP

What is OpenMP
• Pthread is hard to use

• It require a lot of extra code (compared to a sequential program)
• One need to implement by hand even common threading
patterns

• OpenMP aims at reducing the amount of extra code, especially for
simple threading patterns such as:
• Data parallelism
• Barriers
• Critical section

• It consists of
• Compiler directives
• A library
• Some environment variables

65

You need a
specific compiler !

Data Parallelism in
OpenMP

66

#include <stdio.h>
#include <omp.h>

int main() {
 int ID;

 #pragma omp parallel num_threads(10)
 {
 ID=omp_get_thread_num();
 printf("Hello %d\n", ID);
 }

 return 0;
}

#include <stdio.h>

int main() {
 printf("Hello");

 return 0;
}

Sequential Program OpenMP Program

#include <stdio.h>
#include <omp.h>

int main() {
 int i, ID;

 #pragma omp parallel num_threads(10)
 {
 ID=omp_get_thread_num();
 printf("Hello %d\n", ID);
 }

 return 0;
}

Defines the functions
of OpenMP

OpenMP compiler
directives

Ask to execute the block after in
parallel with 10 threads

Example of
OpenMP function

Gets the rank of the current thread
(from 0 to 9 in here)

67

No need to join: there is
an implicit barrier at the
end of the block

Parallelize a for Loop

68

#include <stdio.h>
#include <omp.h>

int main() {
 int i, ID;

 #pragma omp parallel for num_threads(10)
 for(i=0; i<20; i++) {
 ID=omp_get_thread_num();
 printf("Hello %d -> %d\n", ID, i);
 }

 return 0;
}

Distribute the 20 iterations
of the loop in 10 threads

Exercise
• Write, compile and execute the programs of
the two previous slides

• Note to compile, use the flag “-fopenmp” in
the command line

69

gcc understands
OpenMP

#include <stdio.h>
#include <omp.h>

int main() {
 int ID;

 #pragma omp parallel num_threads(10)
 {
 ID=omp_get_thread_num();
 printf("Hello %d\n", ID);
 }

 return 0;
}

student@ip-ac1f162f:~/examples/openmp$./openmp1.out
Hello 1
Hello 2
Hello 3
Hello 4
Hello 5
Hello 6
Hello 7
Hello 8
Hello 0
Hello 9

#include <stdio.h>
#include <omp.h>

int main() {
 int i, ID;

 #pragma omp parallel for num_threads(10)
 for(i=0; i<20; i++) {
 ID=omp_get_thread_num();
 printf("Hello %d -> %d\n", ID, i);
 }

 return 0;
}

student@ip-ac1f162f:~/examples/openmp$./openmp2.out
Hello 2 -> 4
Hello 2 -> 5
Hello 1 -> 2
Hello 1 -> 3
Hello 4 -> 8
Hello 4 -> 9
Hello 6 -> 12
Hello 6 -> 13
Hello 8 -> 16
Hello 8 -> 17
Hello 0 -> 0
Hello 0 -> 1
Hello 3 -> 6
Hello 3 -> 7
Hello 7 -> 14
Hello 7 -> 15
Hello 9 -> 18
Hello 5 -> 10
Hello 5 -> 11
Hello 9 -> 19

The execution order is
not predictable !

Synchronization with
OpenMP

71

• It is possible to express most synchronization
techniques in OpenMP

#pragma omp parallel for num_threads(10)
 for(i=0; i<20; i++) {
 ID=omp_get_thread_num();
 printf("Hello %d -> %d\n", ID, i);
 #pragma omp critical
 {
 printf("Critical section\n");
 }
 printf("End\n");
 }

Critical Sections
#pragma omp parallel num_threads(10)
 {
 ID=omp_get_thread_num();
 printf("Hello %d\n", ID);
 #pragma omp barrier
 printf("Good bye %d\n", ID);
 }

Barriers

Variable Sharing with
OpenMP

• It is possible to define variables as shared and
private explicitly

• private(x,y): make x and y private to threads

• shared (x,y): make x and y shared between
threads

• By default, variables are shared

Exercise

73

• Parallelize img_kernel.step2.c with OpenMP
using barriers. Call it img_kernel.step7.c

You can get it from http://
trouve.sakura.ne.jp/aca/img_kernel.step2

http://trouve.sakura.ne.jp/aca/img_kernel.step2

Major Design Patterns
in Thread Programming

When do you spawn threads ?

How do you divide the work between threads ?

How do you structure your program ?

Thread Creation
• Static threads

• The program creates a finite number of threads
at startup

• The programs give tasks to available threads
• If no thread is available, waits for one to be ready
• The thread sleeps when the task ends

• Dynamic threads
• The programs spawns a thread for each task
• The thread dies when the task ends

Divide the Work among Threads
Data and Task Parallelism

77

Data Parallelism Task Parallelism

Do the thread
execute the same

code ?
Same code Different code

Do the thread take
same inputs ? Different inputs

Same inputs
(or the output of
another thread)

The one we used

Program Structures
• Libraries like pThread allows to implement any parallel
structure
• But complex parallel programs tend to be hard to maintain
• Deadlock and performance problems are often hidden
behind complexity

• Therefore, people tend to stick to simple structures, the
major two being
• Map reduce
• Producer / consumer

• The formalism of these simple techniques has contributed to
the popularity of parallel programming (e.g. Hadoop)

78

Program Structure

Map Reduce
• Map reduce is a very simple design pattern, in two steps
• Map step

• Many threads are spawn at the same time using data
parallelism

• The input data are mapped to the threads (using more-or-
less complex patterns)

• Reduce step
• Upon termination, the output of each thread is gathered
• All the workers are often synchronized with a barrier

79

M
A
P

RE
DU
CE

Program Structure

Producer / Consumer
• Producer / Consumer is a simple design patterns that allows to
distribute work among threads

• It is articulated around two types of threads (non-synchronous)
• The producer ones: create work to do
• The consumer: pick up work to do

• The “work to do” is stored in a data structure in shared memory
• Protected by a mutex or a semaphore

80

Container of tasks
to carry out

Producer Threads Consumer Threads

tasks tasks

Homework
(if you feel like it)

• Implement the image kernel application with a
consumer / producer design pattern

Word of the end
Parallelism should be

use wisely

Thread vs. Asynchronous
• Threads are expensive for the system

• Dedicated stack and structure in the
kernels

• Thread switch is time consuming
(system calls, I/D cache misses)

• This cost sometimes overrides the
benefits for threading

• In particular, I/O intensive programs may
gain a lot from asynchronous, non-parallel
programming

• Example of web server
• I/O intensive (1 network access: about
100ms, that is, 1G clock cycles)

• Apache: use one dynamic threads per
user request

• Nginx: use single-thread, asynchronous
programming http://blog.webfaction.com/2008/12/a-little-holiday-present-10000-

reqssec-with-nginx-2/ 83

Nginx is 3 times faster,
uses far less memory !

1千億

Note: the benchmarks
consists of serving a lot of
small static files

84

A Good Book

お疲れさまでした

