
Asynchronous and
Parallel Programming

Antoine Trouvé
2015/05/25

Self Introduction

2

• Family name: Trouvé (トルヴェ)

• Given name: Antoine (アントワン)

• Origin: Poitiers, France (ポワチエ)

• http://ja.wikipedia.org/wiki/ポワチエ

• Study
• Master: Bordeaux Institute of Technology
• PhD: Kyushu University

• Now:
• Assistant professor at Kyushu University
• Family

僕 妻 子 子

http://ja.wikipedia.org/wiki/%E3%83%9D%E3%83%AF%E3%83%81%E3%82%A8

About this Lecture

3

• Two sessions

• 2015/5/25 (today)

• 2015/6/1 (next Monday)

• Content

• 13:00 ~ 14:30: Lecture

• 14:50 ~ 16:20: Exercise

Slides in

English

話は

日本語

What you will Learn

4

C Programming

Use Linux

Connect via SSH Parallel
Programming

Virtual Machine

Launch a simple
web server

Remote
coding

Debug with
printf

Image
processing

Computer
Architecture

Operating
System

Why Parallel
Programming ?

How Traditional Program are
Executed

• Let us consider this program (pseudo code):

• I is executed as follows (if we ignore I3 and I4)

6

I1 image = read image file
I2 for(x=1; x<width-1; x++)
I3 for(y=1; y<height-1; y++)
I4 pixel = image[x][y]
I5 pixel *= -1

I1 I4 I5 I4 I5 I4 I5…

width × height times

Hw Architecture:
What this program supposes

Memory

Processor

7

• The memory stores all the
data

• The processor executes the
instructions

• But …

Hw Architecture
What Really Exists

Memory

Processor
Core 1

Processor
Core 2

Memory Bus

I/O Bus

Hard Disk Network

8

• Multi core processor
• 2 on this figure
• Can be 4, 6, 8 … more !

• Files are stored in slow I/Os
• Hard drive / SSD access: 1

~ 10ms
• Network access: 100ms

That is 100 000 000 cycles
on a 1GHz processor !

Traditional Program on
Modern Hw Architecture

9

Core1

Core2
I/O

I1 I4/5IDLE

I1

IDLE

Core 1 waits for slow I/Os

Core 2 has nothing to do

time

Traditional Program on Modern
Hw Architecture (4 core)

10

Core1

Core2

I/O

I1 I4/5IDLE

I1

IDLE

Core3 IDLE

Core4 IDLE

time

Current Processor Trends

11Source: http://ipcc.cs.uoregon.edu/lectures/lecture-16-spp.pdf

core is raising

Frequency is stalling
/ diminishing

http://ipcc.cs.uoregon.edu/lectures/lecture-16-spp.pdf

Mini-Test

12

• I have the following hw architecture
• 2 processor cores at 2.6GHz (average IPC=1.5)
• Average HDD access time: 2ms + 1Gb/s
• Average RAM access time: 100ns
• Average cache access time: 5ns
• Cache line size: 128 bits

• Question: Calculate the execution time of the following
program (only consider I1, I4 and I5)

I1 image = read image file
I2 for(x=1; x<width-1; x++)
I3 for(y=1; y<height-1; y++)
I4 pixel = image[x][y]
I5 pixel *= -1

(the image
is 20 MB)

Mini-Test

13

• I got rich, so I bought a new processor with 8 cores
at 1.6GHz and an IPC per core of 1.6

• Question: Will the program run faster ?

Conclusion

We need to better use
our computing

resources !

Asynchronous
Parallel

Distributed
Concurrent

Asynchronous and Parallel
Programming

• Asynchronous = Not Synchronous
• We don’t execute tasks in sequential orders
• Tasks are started before the others end
• This is useful to

• Hide the time spent in I/Os
• Give the impression of simultaneity on single core

• Parallel
• When asynchronous tasks actually run simultaneously

we use the term parallel programming
• This is only possible if you have multiple processor

cores

16

非同期

並列

Use case of Asynchronous
Programming (1)

17

Make video games both fluid
and interactive

/* We want 60 frames per second */
#define FRAMERATE 60

/* Defines some functions and structure for my game */
#include "MyGame.h"

/* GameState is a structure defined in MyGame.h */
GameState *game_state;

int main() {
 /* Some variables to store the time elapsed between two frames */
 clock_t last_frame = clock();
 clock_t now;
 /* The number of clocks between frames */
 clock_t delta = CLOCKS_PER_SEC / FRAMERATE;
 /* Stores the key pressed by the user */
 char c;

 /* init_game_state is a function defined in MyGame.h */
 game_state = init_game_state();

 while(true) {
 /* Updates the display if enough clocks are elapsed */
 now = clock();
 if(now-last_frame > delta) {
 /* render_frame is a function defined in MyGame.h */
 /* It updates the display */
 render_frame(game_state);
 last_frame = now;
 }
 /* Captures user input */
 c = getch();
 if(c!=ERR) {
 /* update_game_state is a function defined in MyGame.h */
 /* It updates the state of the game depending on user input */
 update_game_state(game_state);
 }
 }
}

This program is a
“game loop”, the base

of almost any game

Use case of Asynchronous
Programming (1)

18

Make video games both fluid
and interactive

/* We want 60 frames per second */
#define FRAMERATE 60

/* Defines some functions and structure for my game */
#include "MyGame.h"

/* GameState is a structure defined in MyGame.h */
GameState *game_state;

int main() {
 /* Some variables to store the time elapsed between two frames */
 clock_t last_frame = clock();
 clock_t now;
 /* The number of clocks between frames */
 clock_t delta = CLOCKS_PER_SEC / FRAMERATE;
 /* Stores the key pressed by the user */
 char c;

 /* init_game_state is a function defined in MyGame.h */
 game_state = init_game_state();

 while(true) {
 /* Updates the display if enough clocks are elapsed */
 now = clock();
 if(now-last_frame > delta) {
 /* render_frame is a function defined in MyGame.h */
 /* It updates the display */
 render_frame(game_state);
 last_frame = now;
 }
 /* Captures user input */
 c = getch();
 if(c!=ERR) {
 /* update_game_state is a function defined in MyGame.h */
 /* It updates the state of the game depending on user input */
 update_game_state(game_state);
 }
 }
}

Updates the display
(draws the screen)

Processes user
input (keyboard hit)

Initializes the game

19

/* We want 60 frames per second */
#define FRAMERATE 60

/* Defines some functions and structure for my game */
#include "MyGame.h"

/* GameState is a structure defined in MyGame.h */
GameState *game_state;

int main() {
 /* Some variables to store the time elapsed between two frames */
 clock_t last_frame = clock();
 clock_t now;
 /* The number of clocks between frames */
 clock_t delta = CLOCKS_PER_SEC / FRAMERATE;
 /* Stores the key pressed by the user */
 char c;

 /* init_game_state is a function defined in MyGame.h */
 game_state = init_game_state();

 while(true) {
 /* Updates the display if enough clocks are elapsed */
 now = clock();
 if(now-last_frame > delta) {
 /* render_frame is a function defined in MyGame.h */
 /* It updates the display */
 render_frame(game_state);
 last_frame = now;
 }
 /* Captures user input */
 c = getch();
 if(c!=ERR) {
 /* update_game_state is a function defined in MyGame.h */
 /* It updates the state of the game depending on user input */
 update_game_state(game_state);
 }
 }
}

Updates the display
(draws the screen)

Captures user input
(keyboard hit)

Use case of Asynchronous
Programming (1)

Make video games both fluid
and interactive

• The functions render_frame, getc
and update_game_state should be
executed asynchronously

• Question: what happens otherwise ?

Use case of Asynchronous Programming (2)

• Most modern operating systems are multitasked

• They run multiple programs (or tasks) at the
same time

• This works even on a single core !

• Question: how is that possible ?

Execute programs simultaneously on a single core

Mini-test
20

A first Parallel
Program

Our First Parallel Program

22

I1 image = read image file
I2 for(x=1; x<width-1; x++)
I3 for(y=1; y<height-1; y++)
I4 pixel = image[x][y]
I5 pixel *= -1

Example of our Program with 2 Processing Cores

Let us to divide calculations
between two processor cores

Our First Parallel Program

23

Initialization
I1 image = read image file

Divide the image among Worker

Worker 1

Worker 2

Worker 1
I12 for(x=1; x<width-1; x++)
I13 for(y=1; y<height/2-1; y++)
I14 pixel = image[x][y]
I15 pixel *= -1

Worker 2
I12 for(x=1; x<width-1; x++)
I13 for(y=height/2; y<height-1; y++)
I14 pixel = image[x][y]
I15 pixel *= -1

core 1 I1 Worker 1

Worker 2core 2

Our First Parallel Program

24

Divide tasks among Workers
Worker 1
I1 image = read image file

Worker 2
I2 for(x=1; x<width-1; x++)
I3 for(y=1; y<height-1; y++)
I4 pixel = image[x][y]
I5 pixel *= -1

core 1 Worker 1

Worker 2core 2

We read the data while processing it.
Warning:
- it requires worker 2 to wait for worker 1 to read
the data: this is synchronization
- we will study that next week

Two Approaches to
Parallelize Programs

25

• Data-parallelism
• All workers are doing the same job, with different

data
• Task-parallelism

• All workers are doing a different task, sub-part of
the algorithm

• Often looks like pipelined processing

Mini Test
• I have the following hw architecture

• 2 processor cores at 2.6GHz (average IPC=1.5)
• Average memory access time:10 ns
• Average HDD access time: 2ms + 1Gb/s

• The image is 20MB
• We ignore

• The cache
• Instructions I2 and I3

• Question: Calculate the execution time of the
programs of slide 31, 32, 33. Which one is the fastest ?

26

How Modern OS
Support Parallelism

Why are we Talking about
the OS ?

28

• Programs that we execute are
user programs

• They run above the OS, that is,
they cannot access the hw
directly

• Therefore, the OS needs to
support parallelism for user
programs to benefit from it

Hardware

OS

User Programs

The hw/sw stack

Threads and Processes
• Most modern OS (Linux, Windows,

MacOSX, BSD) support two kinds of
parallel facilities

• Facility 1: Process
• Have their own virtual memory

• Facility 2: Threads
• Have their own stack and processor

state
• Threads are affected to processes
• One process owns at least one thread
• Threads of a same thread share the

same virtual memory

29

Process Process

Thread
1

Thread
2

VM Virtual Memory

Reminder: Virtual Memory
• Programs store their data in

• The processor’s registers - a few KB
• The memory (“the RAM”) - several GB

• Data in the memory are designated by addresses, stored in pointers
• In old OS, programs used to manipulate address directly to the real

memory, however
• This made impossible for programs to manipulate data larger

than the size of the memory
• This made possible for programs to modify the data of other

programs
• Therefore, modern OS hide real addresses to programs, and give

them virtual addresses
• The memory addressed by virtual addresses is the virtual memory

30

Reminder: Virtual Address
Translation

• Data in the virtual memory may be physically stored in
• he memory
• the hard drive

• The OS translates virtual addresses to “real addresses”:
this is called address translation

• Address translation is executed at each memory accesses
• In order to speedup address translation, modern

processors feature a hardware called the TLB (translation
lookup buffer)

• The TLB stores the correspondence between virtual and
real addresses

31

Reminder: Virtual Address
Translation

32

Source: http://bug7015.tistory.com/category/study/Computer%20Architecture

http://bug7015.tistory.com/category/study/Computer%20Architecture

Reminder: The state of a
program

• The state of a program is defined by
• The state of the processor: which value in which

register ?
• The state of the memory: which values in the memory ?
• The active virtual memory (that is the state of the TLB)

• The memory is divided into three parts
• The stack: where are stored the variables local to

functions
• The heap: where are stored dynamically allocated

variables
• Other data segment: where are stored static variables

33

Reminder: The state of a
program

34
Source: http://www.c-jump.com/CIS60/lecture01_2.htm

http://www.c-jump.com/CIS60/lecture01_2.htm

Mini Test

• Question: What does the OS need to store to
maintain thread ? Process ?

35

Thread Scheduling

36

• The OS maintains a list of active threads

• The threads are allocated to computing cores

• When the number of threads is greater that then
number of computing cores, threads are re-
allocated every fixed amount of time

• This is called scheduling

Example of Thread
Scheduling

37

core 1

Thread 1 Thread 2 Thread 3

core 2

time

• The OS executes the scheduling algorithm
• This is an imaginary example of scheduling

What is a Time Slice ?

38

core 1

core 2

time

Time slice
• The amount of time between

each re-scheduling.
• It is usually constant, unless a

process waits for I/O

For example thread 1
ends earlier here. This
may be because it is
waiting for I/O

What is a Context Switch ?

39

core 1

core 2

time

Context Switch
• When the scheduler changes the thread

active on a core
• Context switch costs CPU time
• The cost depends on the kind of context

switch

Mini-Test

• Threads 1/2/3 are member of processes 1/2 as
shown above.

• Question: Find 3 types of context switch in the
chart below

• Question: How are they implemented in the OS,
which one is the most expensive ?

core 1

core 2

time
Thread 1

Thread 2

Thread 3

Process 1 Process 2

Memory Model

What is a Memory Model
• Modern processors feature complex memory

architectures with several levels (e.g. L1 cache, L2
cache, RAM, Scratch-pad Memory, Network)

• But those are not visible from the program

• The memory model is the architecture of the
memory as exposed by the programming language

• Example: in C, the memory is unified, divided into a
global and a local memory

42

It is common to classify parallel
programming models according to their

memory model

Task

VM

Task

VM

Task

VM

Interconnect

Task

VM

Task Task

Interconnect

Shared Memory Distributed Memory

43

• When the memory is distributed, we often use the
term distributed programming instead of parallel

Distributed vs. Parallel
Programming

44

Type of parallel
programming Parallel Distributed

Memory Model Shared memory Distributed memory

Worker Implementation Thread Process

Physical Location
(typical case)

Same processor
(often same core) Different processor

Target Hardware Single or Multi-core
Processor

Many processor
systems

(supercomputers)Inter-task
Communication Model Shared memory Message passing

Major C APIs POSIX Thread,
OpenMP Fork, MPI, RPC

Shared Memory vs.
Message Passing

• Context: workers want
to share data

• When the memory is
shared, they can
communicate by reading
each other memory

• Otherwise, they need a
way to send data
between each other: this
is message passing

45

Type of parallel
programming

Shared
Memory

Message
Passing

On shared
memory

memory model
○ ○

On distributed
memory model × ○

Cost of
communication

Low (need to
access a
pointer)

High (need to
copy data)

Exercise
First steps with thread

programming with POSIX Thread
Shared memory
model

Before Starting, Let us Setup
the Environment

1. Configure your virtual machine on Laboratory Cloud

2. Install some programs on your personal computer in
order to edit the files on Laboratory Cloud

About Virtual Machine
• We will use the Cloud as experimental

environment
• You will have access to your own virtual

machine (VM) on Amazon Web Service
(AWS), through Laboratory Cloud
(LabCloud)

• It is like having your own computer, but in
a remote data center in Tokyo

• We will connect remotely (ssh) to edit files
and execute experiments

• You can think of a virtual machine as a real
computer

48

×

Configure your Account to
Create a Virtual Machine

49

• Access to Laboratory Cloud
• https://www.laboratorycloud.org

• Access to the “toolbox” (ツールボックス)

https://www.laboratorycloud.org

50

Login or create
a new account

51

僕のコード：677162933971980
僕のアカウント名：trouve@soc.ait.kyushu-u.ac.jp

52

+ Login, Again

mailto:trouve@soc.ait.kyushu-u.ac.jp

Create a Virtual Machine

①ツールの利用ページ
はこちら

②講義で利用する
講義コード：00247389

③進む（下）

④Linux

⑤再読込（🔁）

⑤Ubuntuほげほげが現れます。左の
チェックボックスをクリック

⑥ステップ２へ進む

⑦ステップ３へ進む

⑧設定した内容でインスタンスを起動

Connect to your VM
• First you need the IP of the VM so you can connect

to it through the Internet

55

The IP is on the screen you
get after running your VM

Access your VM via SSH
• SSH (Secure SHell)

• SSH is a protocol to access a distant computer
via the network (terminal, file manipulation)

• Uses encryption
• Enable to execute command as if your were on

the distant computer
• On Windows: download Putty

• Site: http://www.chiark.greenend.org.uk/
~sgtatham/putty/download.html

• File “putty.exe“
• On MacOSX: use the Terminal

• In Launchpad, look for “terminal”
• Your connection information

• User name: student
• Password: I am a student…
• IP: TBD

56

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Install Putty

Access your VM via SSH (Windows)

Enter the IP address
of your VM

login as: “student”
password: “I love programming!”

58

Access your VM via SSH (MacOSX)

59

Type in the terminal “ssh student@IP”

Type the password “I love
programming!”

Edit Files
• You can edit files with the command line

• With command “vim” or “emacs” on Putty /
Terminal

• But it is more convenient to use some remote GUI
editing tool

• Windows: Notepad++ (NppFTP window)

• MacOSX: Cyberduck “edit” button

Your very first program
in Pthreads

POSIX Threads in C
• The default way to create threads in Linux is POSIX

threads, or pthreads
• Pthread library is accessible via the library file

“pthread.h”
• Major functions:

• Create a thread: pthread_create(…)
• Wait for thread to complete: pthread_join(…)
• Return a value: pthread_exit(…)
• Get the id of the current thread: pthread_self()
• Compare thread ids: pthread_equal(…)

62

man pthread_create

NAME
 pthread_create -- create a new thread

SYNOPSIS
 #include <pthread.h>

 int
 pthread_create(pthread_t *restrict thread, const pthread_attr_t *restrict attr, void *(*start_routine)(void *),
 void *restrict arg);

An address where to
store the thread id

“restrict” keyword
Says to the compiler that no other
pointer points the same object.

Some options to
create the thread

The function to run in
the threadArgument to pass to

the thread function

$> man pthread_create

Your First
Pthread
Program

#include<stdio.h> // printf()
#include<unistd.h> // sleep()
#include<string.h> // strerror(char*)
#include<pthread.h>

void* doSomeThing(void *arg)
{
 /* The thread id is found, let us switch to some real work */
 printf("Starts thread...\n");

 sleep(3);

 printf("... ends thread.\n");

 return NULL;
}

int main(void)
{
 int i = 0;
 int err;
 pthread_t tid;

 err = pthread_create(&tid, NULL, &doSomeThing, NULL);
 if (err != 0) {
 printf("\ncan't create thread :[%s]\n", strerror(err));
 }

 return 0;
}

64

Compile / Link / Execute

65

$> gcc pthread.c -c -o pthread.o

① Compile the program

$> gcc pthread.o -o pthread.out
/tmp/ccW66lpz.o: In function `main':
pthread.c:(.text+0x57): undefined reference to `pthread_create'
collect2: error: ld returned 1 exit status

② Link

$> gcc pthread.o -lpthread —o pthread.out

You need to tell
gcc to link with
libpthread

② Execute
$> ./pthread.out

Do you get What you
Expect ?

$> ./a.out

$> ./a.out
Starts thread...
... ends thread.

66

Nothing happens !

Parent / Child Thread

main thread

child threadsleep(3)

return 0 time

• The main thread finishes before the other ones
• Because the main thread created the child

thread, it is its parent thread
• If the parent thread dies or finishes, the child

thread is interrupted by the OS

The parent kills
the child

Question

How would you make the
children thread terminate ?

$> ./a.out
Starts thread...
Starts thread...
... ends thread.
... ends thread.

How to Make the Child Thread
Terminate ?

69

Answer: make the
parent thread wait for

its children !

Method 1 (the bad one)

int main(void)
{
 int i = 0;
 int err;
 pthread_t tid;

 err = pthread_create(&tid, NULL, &doSomeThing, NULL);
 if (err != 0) {
 printf("\ncan't create thread :[%s]\n", strerror(err));
 }

 sleep(3);

 return 0;
}

Wait some time for
children to finish

70

Method 1 (the bad one)

int main(void)
{
 int i = 0;
 int err;
 pthread_t tid;

 err = pthread_create(&tid, NULL, &doSomeThing, NULL);
 if (err != 0) {
 printf("\ncan't create thread :[%s]\n", strerror(err));
 }

 sleep(3);

 return 0;
}

Wait some time for
children to finish

71

BAD !
In general, we don’t know how 

long we have to wait !

Method 2 (the good one)
int main(void)
{
 int i = 0;
 int err;
 pthread_t tid;

 err = pthread_create(&tid, NULL, &doSomeThing, NULL);
 if (err != 0) {
 printf("\ncan't create thread :[%s]\n", strerror(err));
 }

 pthread_join(tid, NULL);

 return 0;
}

Asks the parent to
wait for the child

main thread

child thread sleep(3)

pthread_join

The parent thread
waits for the child
to finish

72

Your very first useful
program with Pthreads

Edge Detection Program

74

Edge Detection Program
Flow

Read the image file (format bmp)

Copy the image

Apply a convolution matrix (3×3)

Saves the image

75

How to Read/Write the
Image File

Header (54 bytes)

Pixels
(row major)

Format “bmp”

Red
8 bits

Pixel (32 bits)
Green
8 bits

Blue
8 bits

void
8 bits

Always 0

76

What is a Convolution Matrix

77
Source: http://stats.stackexchange.com/questions/114385/what-is-the-difference-between-convolutional-neural-networks-restricted-boltzma

http://stats.stackexchange.com/questions/114385/what-is-the-difference-between-convolutional-neural-networks-restricted-boltzma

The Serial Version
of the Program

78

~/examples/serial/serial.c

int main(int argc, char* argv[]) {
 int x, y, offset;
 int cp, kx, ky, px, py;

 if(argc!=3) { printf("Please specify the names of the input and output files in
parameters:\n\t %s <input.bmp> <output.bmp>\n", argv[0]); exit(-1); }

 printf("Size of a pixel: %i\n", sizeof(bmp_pixel_t));

 unsigned char info[54];
 /* Reads the file and allocates the data in the heap */
 unsigned char* data = read_BMP(argv[1], info);

 if(data==NULL) { printf("Unable to open the file. Exit...\n"); return -1; }

 /* Does some stuff */
 printf("Start stuffs...\n");

 // extracts image height and width from header
 int width = BMP_WIDTH(info);
 int height = BMP_HEIGHT(info);

 unsigned char* new_data = malloc(width*height*sizeof(bmp_pixel_t));

 bmp_pixel_t *pixel;
 for(y=1; y<height-1; y++) {
 for(x=1; x<width-1; x++) {
 pixel = BMP_PIXEL(data, x,y);

 /* Applies the kernel matrix */
 for(offset=0; offset<3; offset++) {
 cp=0;

 for(kx=0; kx<3; kx++) {
 for(ky=0; ky<3; ky++) {
 px = (x+kx-1)%(width-1);
 py = (y+ky-1)%(height-1);
 // printf("%d / %d\n", px, py);
 cp += ((int)BMP_PIXEL_COMPONENT(data,px,py, offset)) * kernel_matrix[kx][ky];
 }
 }

 BMP_PIXEL_COMPONENT(new_data,x,y, offset) = (unsigned char)(cp&0xff);
 }
 }
 }

 printf("... end.\n");
 /* Writes the BMP to a file and frees the data from the heap */
 if(write_and_free_BMP(argv[2], new_data, info)==-1) {
 printf("Unable to write the file. Exit...\n"); return -1;
 }

 free(data);

 return 0;
}

The main function
only

The Serial Version
of the Program

79

~/examples/serial/serial.c

int main(int argc, char* argv[]) {
 int x, y, offset;
 int cp, kx, ky, px, py;

 if(argc!=3) { printf("Please specify the names of the input and output files in
parameters:\n\t %s <input.bmp> <output.bmp>\n", argv[0]); exit(-1); }

 printf("Size of a pixel: %i\n", sizeof(bmp_pixel_t));

 unsigned char info[54];
 /* Reads the file and allocates the data in the heap */
 unsigned char* data = read_BMP(argv[1], info);

 if(data==NULL) { printf("Unable to open the file. Exit...\n"); return -1; }

 /* Does some stuff */
 printf("Start stuffs...\n");

 // extracts image height and width from header
 int width = BMP_WIDTH(info);
 int height = BMP_HEIGHT(info);

 unsigned char* new_data = malloc(width*height*sizeof(bmp_pixel_t));

 bmp_pixel_t *pixel;
 for(y=1; y<height-1; y++) {
 for(x=1; x<width-1; x++) {
 pixel = BMP_PIXEL(data, x,y);

 /* Applies the kernel matrix */
 for(offset=0; offset<3; offset++) {
 cp=0;

 for(kx=0; kx<3; kx++) {
 for(ky=0; ky<3; ky++) {
 px = (x+kx-1)%(width-1);
 py = (y+ky-1)%(height-1);
 // printf("%d / %d\n", px, py);
 cp += ((int)BMP_PIXEL_COMPONENT(data,px,py, offset)) * kernel_matrix[kx][ky];
 }
 }

 BMP_PIXEL_COMPONENT(new_data,x,y, offset) = (unsigned char)(cp&0xff);
 }
 }
 }

 printf("... end.\n");
 /* Writes the BMP to a file and frees the data from the heap */
 if(write_and_free_BMP(argv[2], new_data, info)==-1) {
 printf("Unable to write the file. Exit...\n"); return -1;
 }

 free(data);

 return 0;
}

Loads the bmp file

Applies the
convolution matrix

Writes the bmp file

Compile / Link / Execute

$> gcc serial.c -lpthread —o serial.out

① Compile and link the program

$> ./serial ~/examples/img/afghan.bmp afghan.out,bmp

② Execute

80

afghan.bmp afghan.out.bmp

Exercise / Homework
• Execute the serial program. Try with afghan and

afghan_blur. Which one looks the best ?

• Try other convolution matrices.

• Modify the program so that it executes with two
worker threads. Use data-parallelism:

81

Worker 1

Worker 2

Defined at the
top of the file

