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Today’s Objective

Accelerate computer programs



Outline

• Internal representation of programs

– The control flow graph (CFG)

– The data-flow graph (DFG)

– The static single assignment form 
(SSA)

– The function-call graph 

• Example of Optimizations

– Example 1: constant propagation

– Example 2: function inlining

– Example 3: combination

• Loop optimization

– Definition of loops

– Example of nest interchange

• Conclusion
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• Introduction 

– Core / Threads

– Single thread and parallel performances

• Introduction to programming language

– The compilation flow

– Quick history of programming languages

– Quick taxonomy of programming languages

• What is a compiler ?

– We need a translator

– Difference between a compiler and an 
assembler

• Introduction to Optimizations

– Introduction to the intermediate 
representation (IR)

– The front / middle / back ends

– Example of optimizations



INTRODUCTION TO CORE, THREAD AND 
SINGLE-THREAD PERFORMANCE
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Computing Core

• Computer programs are executed on processors
• Processors are made of one or more computing 

cores
• A computing core executes a sequence of 

machine instructions
– Traditionally, one core executes one sequence of 

machine instructions
– Exception of Intel Hyper-Threading: one core 

executes two sequences of instructions

• The list of instructions that a core understands is 
called the Instruction-Set Architecture
– Examples of ISAs

• x86 (Intel 32 bit), x86-64 (Intel 64 bits)
• MMX (early Intel multi-media extension
• ARM v7, the most (only ?) used ISA in smartphones

– One core may understand more than one ISA
• Example of Intel Haswell (latest Intel architecture): x86, 

x86-64, MMX, SSE, SSE2, SSE3, AVX, AVX2 …
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Computing core

Processor

Motherboard



Processing Core: Example
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11110010010111

Computer 
Memory

Processor (one core)

Bus
(on the motherboard)

Definition of the ISA

Instruction Encoding

Top 00

Bottom 01

Left 10

Right 11



Processor: Picture of Intel Ivy Bridge
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Core 1 Core 2 Core 3 Core 4
GPU

(16 cores)

Memory sub-systems (caches)

I/O

ISA: x86_64 with extensions



What is a Computing Thread ?

• A computing thread is a sequence of machine instructions
– The instructions are executed one after the other
– The execution order might vary depending on the architecture of the 

processor (e.g. out of order execution)

• A computer program is made of one or more threads
– One thread: single-thread programming
– >1 thread: multi-thread programming

• Threads allow to parallelize computations
– We can expect programs to run faster (see next slide)
– But one needs more than one computing core (hardware overhead)

• Multiple thread can also run on a single core
– Threads are cut smaller sequence and scheduled by the operating 

system
– Few acceleration to expect unless the program is often waiting for I/Os

10



Single Thread and Parallel Performances
On an example first (1/2)
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k = scanf(“%d”)
sum = 0

for(i=      0 to N/6) M[i]=M[i] % k
for(i=  N/3+1 to 2*N/3) M[i]=M[i] % k
for(i=2*N/3+1 to     N) M[i]=M[i] % k

for(i=0 to N) sum+=M[i]
print(“%d”, sum)

5 tasks

1 second

Our program: 5 tasks of 1 second
Green: can not execute in parallel
Red: can execute in parallel



Single Thread and Parallel Performances
On an example (2/2)
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① Sequential execution (no thread)

time

5 seconds

② Parallel execution (with threads)

3 seconds
+overhead

③ Sequential with 2 times faster single thread performance

2.5 seconds

④ Parallel execution and faster single thread performance

1.5 second



Single Thread and Parallel Performances
On an example (2/2)
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① Sequential execution (no thread)

time

5 seconds

② Parallel execution (with threads)

3 seconds
+overhead

③ Sequential with 2 times faster single thread performance

2.5 seconds

④ Parallel execution and faster single thread performance

1.5 second

Required hardware:

1 processor core

Required hardware:

3 processor cores

Required hardware:

1 twice faster processor core

Required hardware:

3 twice faster processor cores



Gene Amdahl
1922 ~ (92 y.o.)
Formulated while at IBM

Amdahl’s Law
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𝑆(𝑁) =
1

1 − 𝑃 + 𝑃/𝑁

N: number of cores
S(N): Speedup by using N cores
P: part of the program that you 

can parallelize

1 3 5 7 9 11 13 15

P
er

fo
rm

an
ce

s

# Cores

Perf (P=80%) Perf (P=90%)

* picture: courtesy of Wikipedia

Previous example:
N=3, P=3/5=60%⇒ S(N)=1.67 times faster
(compared to N=1 and P=0)



Gene Amdahl
1922 ~ (92 y.o.)
Formulated while at IBM

Amdahl’s Law and Single-thread 
Performance
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𝑆(𝑁) =
𝑆𝑇𝑆

1 − 𝑃 + 𝑃/𝑁

N: number of cores
S(N): Speedup by using N cores
P: part of the program that you 

can parallelize
STS: Single-thread speedup

* picture: courtesy of Wikipedia

Previous example:
N=3, P=3/5=60%,STS=2⇒ S(N)=3.32 times faster
(compared to N=1, P=0 and STS=1) 

1 2 3 4 5 6 7 8

P
er

fo
rm

an
ce

s

Number of cores (N)

P=80%,STS=2

P=60%,STS=2

P=80%,STS=1
P=40%,STS=2

P=60%,STS=1

P=40%,STS=1
STS=2

STS=1



INTRODUCTION TO 
PROGRAMMING LANGUAGES
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The Development Flow

• Everything starts with an idea

• The programmer implements 
the idea in a programming 
language

• The programming language is 
compiled in machine code

• The machine code is executed 
on the processor

• The programmer repeats the 
flow until the program is fast 
enough
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①実装

②コンパイル

③性能計測
（実行）

④手動
最適化

早い：終了遅い

アイデア

プログラム
（例：津波シミュレー

ション）

実行可能
プログラム

人間言語から
パソコン言語まで

最適化ループ
性能向上が必要
（最適化）
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①実装

②コンパイル

③性能計測
（実行）

④手動
最適化

早い：終了遅い

アイデア

プログラム
（例：津波シミュレー

ション）

実行可能
プログラム

人間言語から
パソコン言語まで

最適化ループ
性能向上が必要
（最適化）

現在地



Very Quick History of Prog. Lang. (1/2)
Early times

1940’s: machine code (first generation of prog. Lang.)
• Programming using binary code directly
• Example of the frog: 11110010010111

But binary has low productivity
• Too complex for human being: error prone
• Very hard to write large programs

1950’s: assembly language (second generation of prog. 
lang.)
• Instead of writing “1” and “0”, people write “add” or “sub”
• Example of the frog: 右;右;上;左;下;下;右

Productivity is better than binary, but it could be better
• Quick fix: people use “macro assembly instructions”: instead of 

writing 右;右 we can write ２回右
• No real “high level language” yet 19



Very Quick History of Prog. Lang. (2/2)
Toward modern languages

End of 1950: Apparition of first programming languages (third generation 
of prog. lang.)
• Fortran: scientific calculations
• Cobol: data processing
• Lisp: functional language

1969-1973: C language
• Created in Bell laboratories (USA) to implement the first UNIX OS
• The most used language right now
• Meant for system programming, but used for everything now 

(unfortunately)

1983: C++ language (object-oriented language)
• Extension of C to support object-oriented programming
• Widely popular now

1996: Java (virtual machines and just-in-time compilation)
• Resembles C++, but abstracts memory allocations
• Originality: the Java compiler compiles in bytecode, not machine code

20

Written not as 
text files, but 

as punch cards



Example of Languages
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int main() { 
int seed = 3, k=42, N=67; 
for(int i=0; i<N; i++) seed = seed * seed % k;
return seed;

}

09 2e 73 65 63 74 69 6f 6e 09 5f 5f 54 45 58 54
2c 5f 5f 74 65 78 74 2c 72 65 67 75 6c 61 72 2c
70 75 72 65 5f 69 6e 73 74 72 75 63 74 69 6f 6e
73 0a 09 2e 67 6c 6f 62 6c 09 5f 6d 61 69 6e 0a
09 2e 61 6c 69 67 6e 09 34 2c 20 30 78 39 30 0a
5f 6d 61 69 6e 3a 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 23 23 20 40 6d 61 69 6e
0a 09 2e 63 66 69 5f 73 74 61 72 74 70 72 6f 63
0a 23 23 20 42 42 23 30 3a 0a 09 70 75 73 68 71
09 25 72 62 70 0a 4c 74 6d 70 32 3a 0a 09 2e 63
66 69 5f 64 65 66 5f 63 66 61 5f 6f 66 66 73 65
74 20 31 36 0a 4c 74 6d 70 33 3a 0a 09 2e 63 66
69 5f 6f 66 66 73 65 74 20 25 72 62 70 2c 20 2d
31 36 0a 09 6d 6f 76 71 09 25 72 73 70 2c 20 25
72 62 70 0a 4c 74 6d 70 34 3a 0a 09 2e 63 66 69
5f 64 65 66 5f 63 66 61 5f 72 65 67 69 73 74 65
72 20 25 72 62 70 0a 09 6d 6f 76 6c 09 24 30 2c
20 2d 34 28 25 72 62 70 29 0a 09 6d 6f 76 6c 09
25 65 64 69 2c 20 2d 38 28 25 72 62 70 29 0a 09
6d 6f 76 71 09 25 72 73 69 2c 20 2d 31 36 28 25
72 62 70 29 0a 09 63 6d 70 6c 09 24 31 2c 20 2d
38 28 25 72 62 70 29 0a 09 6a 67 09 4c 42 42 30
5f 32 0a 23 23 20 42 42 23 31 3a 0a 09 6d 6f 76
6c 09 24 2d 31 2c 20 2d 34 28 25 72 62 70 29 0a
09 6a 6d 70 09 4c 42 42 30 5f 33 0a 4c 42 42 30
5f 32 3a 0a 09 6d 6f 76 71 09 2d 31 36 28 25 72
62 70 29 2c 20 25 72 61 78 0a 09 6d 6f 76 71 09
38 28 25 72 61 78 29 2c 20 25 72 61 78 0a 09 6d
6f 76 73 62 6c 09 28 25 72 61 78 29 2c 20 25 65
63 78 0a 09 61 64 64 6c 09 24 33 2c 20 25 65 63
78 0a 09 6d 6f 76 6c 09 25 65 63 78 2c 20 2d 34
28 25 72 62 70 29 0a 4c 42 42 30 5f 33 3a 0a 09
6d 6f 76 6c 09 2d 34 28 25 72 62 70 29 2c 20 25
65 61 78 0a 09 70 6f 70 71 09 25 72 62 70 0a 09
72 65 74 0a 09 2e 63 66 69 5f 65 6e 64 70 72 6f
63 0a 0a 0a 2e 73 75 62 73 65 63 74 69 6f 6e 73
5f 76 69 61 5f 73 79 6d 62 6f 6c 73 0a 

Binary Machine Code Assembly (Intel x86-64)
_main:                                  ## @main
.cfi_startproc

## BB#0:
pushq %rbp

Ltmp2:
.cfi_def_cfa_offset 16

Ltmp3:
.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp4:
.cfi_def_cfa_register %rbp
movl $0, -4(%rbp)
movl $3, -8(%rbp)
movl $42, -12(%rbp)
movl $67, -16(%rbp)
movl $0, -20(%rbp)

LBB0_1:
movl -20(%rbp), %eax
cmpl -16(%rbp), %eax
jge LBB0_4

## BB#2:
movl -8(%rbp), %eax
imull -8(%rbp), %eax
cltd
idivl -12(%rbp)
movl %edx, -8(%rbp)

## BB#3:
movl -20(%rbp), %eax
addl $1, %eax
movl %eax, -20(%rbp)
jmp LBB0_1

LBB0_4:
movl -8(%rbp), %eax
popq %rbp
ret
.cfi_endproc

C

seed = 3; k = 42; N = 67
(0…N).each { |x| seed = seed * seed % k }

ruby



There are many Paradigms to Classify 
Programming Languages

22

Memory model
Von-Neuman ?
NUMA ?

NUMA: Non-uniform memory accesses

Threading model
Single-thread ?
Explicit threads ?

Programming model
Object-oriented ?
Functional ?

Runtime
No runtime ?
Virtual machine ?

Memory allocation model
Explicit allocation ?
Automatic reference counting ?
With garbage collector ?

Compilation model
Statically compiled ?
Just-in-time compiled ?
Interpreted (not compiled) ?

Typing model
Strongly typed ?
Weakly typed ?
Non-typed ?



There are many Paradigms to Classify 
Programming Languages
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Memory model
Von-Neuman ?
NUMA ?

NUMA: Non-uniform memory accesses

Threading model
Single-thread ?
Explicit threads ?

Programming model
Object-oriented ?
Functional ?

Runtime
No runtime ?
Virtual machine ?

Memory allocation model
Explicit allocation ?
Automatic reference counting ?
With garbage collector ?

Compilation model
Statically compiled ?
Just-in-time compiled ?
Interpreted (not compiled) ?

Typing model
Strongly typed ?
Weakly typed ?
Non-typed ?

Most language are multi-paradigm



WHAT IS A COMPILER ?
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Programmers use programming language

Processors only understand machine code

but

We need a translator: the compiler
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現在地



Input / Output of the Compiler
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Human Readable 
Language Compiler

Machine 
Code

1001101001110001010b=a+2; c=b*4; 

Usually 
C, C++

Usually rather generates assembly

Assembly Assembler
Machine 

Code

Complex statements, easy to 
understand by the human brain

Simple statements, easy to process
by machines



Example of program
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The example of the 
frog of slide 8 



Example of assembly
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you shall go two times right
you shall go top
you shall go left
you shall go two times bottom
you shall go right

Compiler

right
right
top
left
bottom
bottom
right

Programming language
(human readable language)

Assembly

1. Reads English
2. Writes assembly



Definition of the ISA

Example of machine code

30

Assembler

right
right
top
left
bottom
bottom
right

Assembly

Instruction Encoding

Top 00

Bottom 01

Left 10

Right 11

11110010010111

Machine Code

Assembly and Machine Code are 
equivalent.

Each processor architecture come with its 
dedicated assembly and machine code 
languages.

(Usually) One assembly instruction 
per processor instruction

(modern assembly language feature 
“pseudo” or “macro” instructions that 

correspond to more than one processor 
instruction)



Sum-up: the Compilation Flow
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you shall go two times right
you shall go top
you shall go left
you shall go two times bottom
you shall go right

right
right
top
left
bottom
bottom
right

11110010010111Compiler Assembler

Programming
Language

Assembly
Language

Machine Code

Popular Compilers
Intel Compiler (icc)
Microsoft Compiler (Visual Studio)
GNU C Compiler (gcc)
LLVM
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But the compiler is far more than just a translator…

It can optimize programs



COMPILER OPTIMIZATION

33
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There are unnecessary moves in this program

Can you find them ?
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Hard to answer from the text of the program: 
people tend to use graphical representation

The compiler is the same !



The Intermediate Representation
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• The IR is the way the compiler represents program 
internally

• It expresses the important properties of the 
program for further analysis

• In particular, it eases optimization



Example of Optimization
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Unnecessary moves !

Same goal, but less 
moves !

Optimization
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Optimization is about Removing 
Unnecessary Calculations

But, without changing the result 
of the program



Front / Middle / Back-end (1/2)
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you shall go two times right
you shall go top
you shall go left
you shall go two times bottom
you shall go right

right
bottom
right

Frontend

Programming
Language

Assembly
Language

Middle-End

IR

Backend

IR



Front / Middle / Back-end (1/2)
• Frontend

– Input: Programming language
– Output: Intermediate representation
– Key steps: lexing, parsing
– Often uses another IR inside for: the abstract syntax 

tree (AST)

• Backend
– Input: Intermediate representation
– Output: Assembly 
– Key steps: instruction selection and register 

allocation

• Middle-end
– Input: Intermediate representation
– Output: Intermediate representation
– Key steps: many kinds of optimizations !

• Intermediate representation (IR)
– Stored in memory, but can also be saved in files
– Every compiler has its own IR (gcc, LLVM …)

40

Frontend

Middle-End

Backend

Programming 
Language

Intermediate 
Representation

Intermediate 
Representation

Assembly

Also called High 
Level Language

Grammar, language theory



Optimizations are carried at 
every compilation stage

• In the front-end
– The transformations from HLL to IR 

should be of high quality
– Several optimizations are done at AST 

level
– AST is often referred to as a “high-level 

IR”

• In the backend
– Performance are influenced by the 

instruction selection and register 
allocation

• In the middle-end
– Our focus today

41

Frontend

Middle-End

Backend

Programming 
Language

Intermediate 
Representation

Intermediate 
Representation

Assembly

Opt.

Opt.

Opt.

HLL: High level language / IR: Intermediate representation
AST: Abstract syntax tree



Speedup Video Compression
with Optimization (real example)
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692 

198 190 181 178 

llvm.O0 llvm.O1 llvm.O2 llvm.O3 llvm.O4

Time to Encode 2h of Movie with x264 * 
(minutes)

*30 fps, cif (352x288), main profile, extrapolated from video “bridge close”
machine: Intel Core2Duo@2.26GHz, 8GB DDR3, MacOS X 10.7.4

No optimization
11 hours 32 minutes to 

compress the movie With Optimizations
2 hours 58 minutes to 
compress the movie



Speedup Video Compression
with Optimization (real example)
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692 

198 190 181 178 

llvm.O0 llvm.O1 llvm.O2 llvm.O3 llvm.O4

Time to Encode 2h of Movie with x264 * 
(minutes)

*30 fps, cif (352x288), main profile, extrapolated from video “bridge close”
machine: Intel Core2Duo@2.26GHz, 8GB DDR3, MacOS X 10.7.4

No optimizations
11 hours 32 minutes to 

compress the movie With Optimizations
2 hours 58 minutes to 
compress the movie

3.9 times faster
with compiler optimizations turned on

(encoding is almost in real time !)



Effect of Optimizations 
on Power Consumption

• The K supercomputer dissipates 
15MW

• Let us consider a program that 
requires 1h to run
– You need 15MWH to run it

• Let us say you are able to 3.9 times 
with optimization
– You need 15/3.9=3.8MWH to run it
– You saved 11.2MWH, that is, the 

power consumption of 15 
apartments (a small mansion) 
during one month !

• All we had to do is to set the correct 
optimization option to the compiler

44
MWH: Mega Watt per Hour (メガワット時)
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What kind of Optimizations are 
carried-out by Compilers ?

There are may optimization 
techniques !

(LLVM: more than 50 !) 
Carried-out optimization 
depend on the compiler 
and the target processor
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• Compilers mainly optimize single-
thread performance
– Remove unnecessary computations

– Improve the use of cache to reduce 
access latency

– Reduce memory accesses by using 
processor registers

– Take advantage of ISA extension
(especially SIMD)

• Compilers are very bad at thread 
parallelization
– It is the responsibility of the 

programmer to parallelize the code

STS=1

STS=2

(see slide 15)



Practical Example: Remove 
Unnecessary Calculations
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for(i=0; i<strlen(str); i++) {
str[i] += ‘A’-’a’;

}

int N=strlen(str);
for(i=0; i<N; i++) {
str[i] += ‘A’-’a’;

}

int N=strlen(str);
int delta=‘A’-’s’;
for(i=0; i<N; i++) {
str[i] += delta;

}

Example of C program: transformation to capital letters
for string str of length N

computations = N^2 + N + N = o(N^2)

strlen ‘A’-’a’

+=

computations = N + N + N = 3N

strlen ‘A’-’a’

+=

computations = N + 1 + N = 2N+1

strlen ‘A’-’a’

+=

First optimization*

Second optimization*

*Type of optimization: loop-invariant removal



Frog example: Better Use of Processor 
Instructions

48

The optimization we saw 
before

In the middle end

Another optimization.
In the backend end 

(instruction selection)

You need a frog that 
can walk in diagonal

(different ISA)

ISA: Instruction set architecture (see slide 7) / MAC: Multiplication and Accumulation

Common example in real, modern processors:
• Compound instructions:

• MAC: perform multiplication and addition
• Memory access + arithmetic (common in Intel Processors)

• Vector instructions (see next lecture)



CONTROL AND DATA-FLOW GRAPHS 
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you shall go two times right
you shall go top
you shall go left
you shall go two times bottom
you shall go right

right
bottom
left

Frontend

Programming
Language

Assembly
Language

Middle-End

Intermediate Representation (IR)

Backend

IR

What kind of IR compilers use for real ?

Instructions and Graphs

現在地 現在地
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Let us start with some definitions

Control flow instructions

Sequential instructions

Basic Block

Data dependencies



Taxonomy of Instructions

• Def. 1: Sequential instructions
– Are executed in the same order as 

they are written

– Actually perform computations

– Examples: load, add …

• Def. 2: Control flow instructions
– Allow to jump between different 

locations of a sequence

– Blue arrows

– Examples: branch, jump, 
exceptions …

52

int a = 1;
int b = 2;
if (a<b) {
b = a;

} else {
a = b;

}

a = 1
b = 2
if a<b goto L2

L1:
b = a
goto L3

L2:
a = b
goto L3

L3:

Control flow

C Language

IR instructions



Def. 3: The Basic Block

• A basic block is a sequence of instructions that are always executed 
together

• A basic block only contains sequential instructions and often ends 
with one control flow instruction

• Example:

53

a = 1
b = 2
if a<b goto L2

L1:
b = a
goto L3

L2:
a = b
goto L3

L3:

Basic
Block 1

Basic
Block 2

Basic
Block 3

Basic
Block 4



Def. 4: Data Dependences
• For all instructions, we can define

– The input set: the set of the data that the instructions need to be executed
– The output set: the set of data generated by the instructions

• The inclusion between the input and output sets determines the type of 
data dependencies
– See next slide

• Examples:

54

a=1 Input: variable a
Output: variable a

int a=1 Input: nothing
Output: variable a

a=b+1 Input: variables a and b 
Output: variable a

if(a>3) Input: variables a
Output: nothing



Types of Data Dependences
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I1: a = 2
I2: a = 3
I3: b = a + 1
I4: c = a + 2 
I5: a = b + a
I6: d = 6

Example Program

Read after write
One instruction reads the 
value written by another
Example: I3 and I2

Write after read
One instruction reads a value 
before it is written by another 
instructions
Example: I5 and I4

Write after write
Two instructions write in the same 
memory location or register
It is important to keep the order of writes
Examples: I1 and I2

Read after read
Two instructions read in the same 
location
Often not a problem
Example: I3 and I4



What is the Big Deal with Data 
Dependencies ?

• You can change the result of a program if you break a 
dependency

• Example: break a read-after-write

56

I1: a = 2
I2: a = 3
I3: b = a + 1
I4: c = a + 2 
I5: a = b + a
I6: d = 6

I1: a = 2
I3: b = a + 1
I2: a = 3
I4: c = a + 2 
I5: a = b + a
I6: d = 6

Input of I4:
b=4

Input of I4:
b=3

• The compiler often needs to move calculation to optimize
• It needs to analyze dependencies to determine when it 

can (and can’t) move calculation around
• Constraint: the compiler should not change the output of 

the program



Graphical Representation of Data 
Dependencies

57

Opinput output

int a=0
int b=a+2
a = b+a

=0 a +

0

+

b

a

Expresses dependency: arrow
• From operation to input
• From output to operation

I show the constants 
for completeness 

=0 +

+

0

Simplification: remove 
the intermediate results

Example:



Def. 5: The SSA Form
• Issue with the IR of previous slides

– Variables with the same names contain different data
– It is hard to understand the dependency between 

instructions
– Example:

• I4 reads a, but it does not depend on I1
• The a of I1 and the a of I2 are actually different things

• Solution: use Static Single Assignment Form (SSA)
– Variables can only be assigned once
– Variables with the same names represent the same 

data
– Makes it easier to understand data dependencies
– Developed in the 1980s
– Now all IR are in SSA form

• Note: SSA introduce an instruction called “PHI” to 
solve name conflicts during branches
– I won’t detail this today

58

I1: a = 2
I2: a = 3
I3: b = a + 1
I4: c = a + 2 
I5: a = b + a
I6: d = 6

I1: a1 = 2
I2: a2 = 3
I3: b1 = a2 + 1
I4: c1 = a2 + 2 
I5: a3 = b1 + a2
I6: d1 = 6
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The 3 important graphs that define the IR

Control Flow Graph

Data Flow Graph

Function Call Graph



Graph 1: The Control-Flow Graph 
(CFG)

• Graph (V,E) where
– V is the set of basic blocks of the program
– E represents the execution order of basic blocks

• Example: 
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a = 1
b = 2
if a<b goto L2

L1:
b = a
goto L3

L2:
a = b
goto L3

L3:

Basic
Block 1

Basic
Block 2

Basic
Block 3

Basic
Block 4

BB1

BB2 BB3

BB4



Graph 2: The Data Flow Graph (DFG)

• Data dependences can be graphically displayed
• Definition of the data flow graph DFG = (V,E)

– V: the set of instructions
– E: the RAW and WAW dependencies

• Example:
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I1: a = 2
I2: a = 3
I3: b = a + 1
I4: c = a + 2 
I5: a = b + a
I6: d = 6

I1: a1 = 2
I2: a2 = 3
I3: b1 = a2 + 1
I4: c1 = a2 + 2 
I5: a3 = b1 + a2
I6: d1 = 6

Program SSA Form
I1

I2

I3 I4

I5

I6



Graph 3: The Function Call Graph (FCG)

• The third representation used by compilers is the function call graph
– Graph (V,E)
– V are functions of the program
– E symbolize function calls

• Optimizations that involve the function-call graph is are called Inter-
Procedural Optimizations (IPO)
– Early compiler did not feature any IPA

• Example:
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int main() {
return do(6)

}
int do(int x) {

if(x!=0) {
do(i-1)

} else {
return 1;

}
}C Language

main()

do()

Nobody says FCG



Put Everything Together

• Compilers analyze program using IR
– IR: Intermediate Representation
– More expressive that text-form: contains semantic information

• The IR consists of
– Operations and data types
– Control flow graph and function call graph: express the order of 

execution
– Data flow graph: expresses the dependency between 

instructions

• The SSA representation
– SSA: Single Static Assignment
– Makes data dependency analysis easier
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EXAMPLE OF OPTIMIZATIONS
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Overview of Optimizations

• Optimizations may change
– The control flow graph
– The data flow graph (without breaking dependencies)
– The function call graph

• Some optimizations are always efficient
• Some other are double edged

– Depending on the program / target processor an optimization can 
actually reduce performance

• Current compilers almost only optimize single-thread, Von 
Neumann programs
– Because most language follow this paradigms
– Especially, there exist few efficient optimization for threaded programs

• Compilers for other architecture (e.g. GPU) exist, but they provide 
with very few optimization
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Major Targets for Optimizations

• Calculations
– Reduce the amount of calculations

– Use the computations units of the processor more 
efficiently (e.g. SIMD units)

• Flow / Order of execution
– Change the order of execution to allow better single-

thread parallelism (SIMD, out-of-order execution )

• Data
– Change the order the program access to the memory

– Often try to take advantage of caches (If any)
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Example 1: Constant Propagation
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int a = 1;
int b = 2;
c = a + b;

a

1

+

b

2

+

=

c

1

1

+

2

2

+

=

c

1 2

=

c

3 c = 3;

Optimizer

Original Program

Intermediate Representation:
Control Data Flow Graph (CDFG)

Data dependency

Optimized
Program



Example 2: Function Inlining
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int inc(int x) {
return x + 1;

}
int do(int x) {

if (x!=0) {
return inc(x-1);

} else {
return x;

}
}
int main() {

return do(6);
} 

int inc(int x) {
return x + 1;

}
int do(int x) {

if (x!=0) {
return x-1+1;

} else {
return x;

}
}
int main() {

return do(6);
} 

Removes the call to acc()
Saves execution time:
• a function call requires 

several control-flow 
instructions

• these instructions disappear

Very efficient, especially in 
object-oriented languages 
where programmers often 
implement small methods

Increases the size of programs. May negatively affect 
power consumption and instruction cache usage on 
some processors (especially embedded)



Example 3: The Power of Combination
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Optimizations are even more powerful 
when combined !

int inc(int x) {
return x + 1;

}
int do(int x) {

if (x!=0) {
return inc(x-1);

} else {
a = inc(x);
return a – 1;

}
}
int main() {

return do(6);
} 

int inc(int x) {
return x + 1;

}
int do(int x) {

if (x!=0) {
return x-1+1;

} else {
a = x+1;
return a-1;

}
}
int main() {

return do(6);
} 

int inc(int x) {
return x + 1;

}
int do(int x) {

return x;
}
int main() {

return do(6);
} 

Inlining
Constant 

Propagation

int inc(int x) {
return x + 1;

}
int do(int x) {

return x;
}
int main() {

return 6;
} 

Inlining

Only one 
instruction left !



Combination in a Real Compiler
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$> opt [...] –O1 –debug-pass=Structure
Pass Arguments:  [...]
Target Library Information
Target Data Layout
No Alias Analysis (always returns 'may' alias)
Type-Based Alias Analysis
Basic Alias Analysis (stateless AA impl)
ModulePass Manager
Global Variable Optimizerl loops
Interprocedural Sparse Conditional Constant Propagation
Dead Argument Elimination
FunctionPass Manager Code Motion
Combine redundant instructions
Simplify the CFG

Basic CallGraph Construction
Call Graph SCC Pass Manager
Remove unused exception handling info
Inliner for always_inline functions
Deduce function attributes
FunctionPass Manager
Scalar Replacement of Aggregates (SSAUp)
Dominator Tree Construction
[...]
Loop Pass Manager
Canonicalize natural loops
[...]

Combine redundant instructions
Scalar Evolution Analysis
[...]

Strip Unused Function Prototypes
FunctionPass Manager
Preliminary module verification
Dominator Tree Construction
Module Verifier

Bitcode Writer

Option “O1” of LLVM
About 40 optimizations
With many repetitions



LOOP OPTIMIZATIONS
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What is a Loop
• A loop is a piece of code that may be executed several times
• It corresponds to a cycle in the data flow graph (DFG)
• In compilation we consider the following constraints:

– a single entry point
– we also often only allow a single exit point

• Example:
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for(i=0; i<MAX; i++) {
a[i]++;

}

i=0
L1:

if i>=MAX goto L3
L2:

a1 = load a + 1
a2 = a1 + 1
store a2, a+1
i = i - 1
goto L1

L3:

BB1

BB2

BB3

BB4

BB1

BB2

BB3

BB4

Loop
{BB2,BB3}

BB2: head of the 
loop

BB3: body of the 
loop



Why are Loops Important ?

• Rule of “80% / 20%”
– Loops usually count for 20% of the 

code of a program
– But programs usually spend more 

than 80% of their times in loops

• Example:
– Let us consider that we divide by 

two the execution of a given piece 
of code

– Case 1: the code is outside a loop
• total time = 20% / 2 + 80% = 90% of 

the original program

– Case 2: the code is inside a loop
• total time = 20% + 80% / 2 = 60% of 

the original program !
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# Instructions

Loop

Other

Execution Time

Loop

Other



Example of Loop Optimization
Nest Interchange
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int a[4][4];
for (int i=0; i<4; i++)

for (int j=0; j<4; j++)
a[j][i] ++;

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16Memory

Accesses are not sequential
Processor caches are not designed to handle such cases
All memory accesses will miss !

int a[4][4];
for (int j=0; j<4; j++)

for (int i=0; i<4; i++)
a[j][i] ++;

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Memory

If we swap the “for”, the access pattern becomes sequential
This is the best access pattern for caches.
We miss only when we reach a new cache line
On my computer: 5 times faster !



CONCLUSION
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Why Should I Study Optimizing 
Compilers ?

• If you don’t program, you don’t need

• Otherwise, it is important to understand
– What kind of code your compiler expects

– What kind of code your processor is designed for

• It is often possible to reduce the execution 
time by several times with simple code 
modifications !
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Two Levers for Optimizations

• Compiler options

– O2, O3

– Vectorization options

• Code transformations (by hand)

– First objective: Change the order and nature of 
operations by hand

– Second objective: Make it easier for the compiler 
to optimize 
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Example of Loop Optimizations

• Loop unrolling

• Loop fusion

• Loop fission

• Loop collapsing

• Loop unroll and jam

• Polyhedral 
Optimizations
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Data from INRIA laboratory, France
Optimizations are made automatically by some research 
algorithms.

Up to 8.6 
times faster !

2.7 times faster 
in average



Conclusion

• Computer programs are written in language that the processor doesn’t 
understand
– The compiler does the translation

• But a compiler is more than just a translator
– It produces fast code
– To do so, it carries out optimizations

• The compiler uses powerful internal representation to analyze the code
– Data dependency analysis
– Control flow analysis

• Optimizations are often double-edged
– They may reduce performances if misused
– Optimizations should be tailored to the target processor

• The most important optimization targets are loops
– Rule of 80% / 20%
– We can expect several times performance increase !

• In practice optimization is a fine mix of
– manual-tuning
– compiler options setting
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THANK YOU VERY MUCH
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