
Instruction-Level Parallelism
and

Automatic Vectorization

Antoine Trouvé
アントワン トルヴェ

trouve@isit.or.jp
2014/06/23

1

Execution Time
• Reminder: what is a thread

– A sequence of instruction
– Traditionally programs used to be made of one thread
– Modern programs use threads in order to parallelize calculations

• Execution time of a multi-thread program
– Decided by the execution time of the threads on the critical path
– It can be reduced by raising single thread performances

th

re
a

d
s

time

Synchronization
thread1,0

thread0 thread2

thread1,1

thread1,2

thread1,3

𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 𝑡ℎ𝑟𝑒𝑎𝑑0 +max
𝑖

𝑡𝑖𝑚𝑒(𝑡ℎ𝑟𝑒𝑎𝑑1,𝑖) + 𝑡𝑖𝑚𝑒(𝑡ℎ𝑟𝑒𝑎𝑑2)

2

How to Raise Performances ?

3

= reduce the execution time

Method 1: Use more threads
By doing so, we raise the thread-level parallelism.
However, it is not always possible to do.
Not always efficient (Amdahl law)
Moreover, it is hard to do automatically inside the

compiler: the programmer should do it himself !
Example: cut thread1,0 and thread1,3 in half.

Method 2: Raise single-thread performances
Depends on both the hardware and the software.
See next slide…
Example: 1.36 times faster single-thread

performances = 1.36 times faster program

15 cycles

13 cycles

11 cycles

About Single-Thread Performances

• What are single-thread performances ?

– The speed at which a given computing core
executes sequential instructions

• How do we calculate it ?

𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏

𝒕𝒊𝒎𝒆
=

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

𝑐𝑦𝑐𝑙𝑒
×

𝑐𝑦𝑐𝑙𝑒

𝑡𝑖𝑚𝑒
= 𝑰𝑷𝑪 × 𝒇𝒓𝒆𝒒

Unit: instruction
per second

Instruction per
Cycle

Frequency

4

Raise Single Threads Performances
① Can we Raise the Frequency ?

𝑆𝑖𝑛𝑔𝑙𝑒 𝑇ℎ𝑟𝑒𝑎𝑑 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝐼𝑃𝐶 × 𝑓𝑟𝑒𝑞

Source: Hakata Intel Software Conference 2012
Source: http://blog.stuffedcow.net/

5

Mainly because of
exponential power
consumption increase

The frequency of processors
stopped to raise around 2005.
Why ?

Raise Single Threads Performances
① Can we Raise the Frequency ?

𝑆𝑖𝑛𝑔𝑙𝑒 𝑇ℎ𝑟𝑒𝑎𝑑 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝐼𝑃𝐶 × 𝑓𝑟𝑒𝑞

Source: Hakata Intel Software Conference 2012
Source: http://blog.stuffedcow.net/

6

Mainly because of
exponential power
consumption increase

The frequency of processors
stopped to raise around 2005.
Why ?

Raising Single Threads Performances
② Can we Raise the IPC ?

• Definition of the IPC
– Instruction Per Cycle
– The amount of calculation the core is performing per cycle for a

given program

• The higher the IPC, the faster
• The IPC is calculated as follows:

– 𝐼𝑃𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠

• It can be raised by
– Reducing the number of instructions
– Raising the amount of work the processor can do per cycle

7

𝑆𝑖𝑛𝑔𝑙𝑒 𝑇ℎ𝑟𝑒𝑎𝑑 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝐼𝑃𝐶 × 𝑓𝑟𝑒𝑞

Raising Single Threads Performances
② Can we Raise the IPC ?

• Definition of the IPC
– Instruction Per Cycle
– The amount of calculation the core is performing per cycle for a

given program

• The higher the IPC, the faster
• The ILP is calculated as follows:

– 𝐼𝐿𝑃 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠

• It can be raised by
– Reducing the number of instructions
– Raising the amount of work the processor can do per cycle

8

𝑆𝑖𝑛𝑔𝑙𝑒 𝑇ℎ𝑟𝑒𝑎𝑑 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝐼𝑃𝐶 × 𝑓𝑟𝑒𝑞

HARDWARE PEAK IPC AND ILP
IPC, ILP, ASAP

9

Starting Point: the IPC
• Recap from previous slide

– Instruction Per Cycle
– The amount of calculation the core is performing per cycle for a given program
– The higher the IPC, the faster the program

• The IPC is calculated as follows:

– 𝐼𝑃𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠

• For a given hardware and program, the IPC depends on
– the hardware peak IPC (IPCpeak)
– the software Instruction Level Parallelism (ILP)
– the scheduling algorithm used by the core to execute instructions

• The maximum IPC can be defined as:

10

IPC < min(𝐼𝑃𝐶𝑝𝑒𝑎𝑘, 𝐼𝐿𝑃)

Hardware
dependent

Software
dependent

About the Hardware Peak IPC (1/2)
• It is the maximum number of instructions that a computing core

can execute per cycle
• It depends on the amount of computation units in the core
• Schematic examples (see figures below)

– Core 1: IPCpeak = 1
– Core 2: IPCpeak = 2

11

Instruction
Decode

Computation
Unit 1

Write Back

Instruction
Decode

Computation
Unit 1

Write Back

Computation
Unit 2

Instruction
Memory

Instruction
Memory

Core 1

Core 2

About the Hardware Peak IPC (1/2)

12

Source: Intel Software Conference 2103

Real world example: Intel Haswell Architecture
• 20 computation units
• 8 can be used at the same time
• Heterogeneous units (including 256-bit-vector units)
• The Peak IPC depends on the type of instruction
• It is too complex to calculate the Peak IPC, we need to approximate
• Peak IPC = 8 might be a reasonable approximation here (if we

consider vector instructions as a single operation)

About the ILP (1/2)
• Definition of ILP

– Instruction-Level-Parallelism
– The maximum number of instructions that can be executed in parallel, as constrained

by data dependencies
– We also use the term Data-Level-Parallelism
– It is a hardware independent metrics
– The higher the ILP, the more we can expect to reduce the execution time

• How to calculate it ?
1. Generate the data-flow graph of the program
2. Calculate its width (depends on the scheduling algorithm)

13

a1 = 2;
b1 = 3;
c1 = 4;
a2 = a1 – b1;
d1 = b1 * c1;
e1 = a2 + b1;
b2 = a2 + b1;
b3 = e1 * b2;

+
+

-

=
=

*

*

=
a = 2;
b = 3;
c = 4;
a = a - b;
d = b * c;
e = a + b;
b = a + b;
b = e * b;

SSA FormProgram

Data Flow Graph (DFG)

Width ?
Depends on the scheduling

algorithm

About the ILP (2/2)
Example of ASAP Scheduling

14

O6 O7

O4

O1

O2

O8

O5

O3 O1 O2 O3

O4 O5

O6 O7

O8

time

ILP

O1 O2

O3O4

O5

O6 O7

O8

Note:
We can find a scheduling with
width=2 and the same
execution time for this program

Width = 3

ASAP Scheduling

Scheduling on Core1

Instr.
Memory

Execution Example (1/2)
Machine with hwIPC = 2

15

O1 a1 = 2;
O2 b1 = 3;
O3 c1 = 4;
O4 a2 = a1 – b1;
O5 d1 = b1 * c1;
O6 e1 = a2 + b1;
O7 b2 = a2 + b1;
O8 b3 = e1 * b2;

O6 O7

O4

O1 O2

O8

O5

O3

Instruction
Decode

Computation
Unit 1

Write Back

Computation
Unit 2

O6

O7

O4

O1

O2

O8

O5

O3

O6

O7

O4

O1 O2

O8

O5

O3

Core 1 (ASAP Scheduling, 2 CUs)
Program
(1 thread)Source Code

Data-Flow Graph
W = 2

exec. time = 4 exec. time = 5

Execution Example (2/2)
Calculation of the IPC

16

𝐼𝐿𝑃 =
8 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

5 𝑐𝑦𝑐𝑙𝑒𝑠
= 1.6 < 2

Instruction
Decode

Computation
Unit 1

Write Back

Computation
Unit 2

Core 1. hwIPC = 2

O1 O2 O3

O4 O5

O6 O7

O8

Program. ASAP width = 3

O6

O7

O4

O1 O2

O8

O5

O3

Execution on Core 1.

time

Conclusion on ILP / IPC

• The IPC determines single-thread efficiency
– IPC = Instruction per Cycle

– The higher the IPC, the faster

• The IPC is always lower than
– The hardware Peak IPC

– The software intrinsic ILP (Instruction-Level
Parallelism)

• How to raise the IPC ?
– Bad: The hardware IPC is fixed

– Good: The compiler can raise the software ILP

17

IPC AND OPTIMIZATION
Why we need vectors

18

About the Order of Instruction (1/2)

19

O1 a1 = 2;
O2 b1 = 3;
O3 c1 = 4;
O4 a2 = a1 – b1;
O5 d1 = b1 * c1;
O6 e1 = a2 + b1;
O7 b2 = a2 + b1;
O8 b3 = e1 * b2;

O6 O7

O4

O1 O2

O8

O5

O3

Source Code 1

Data-Flow Graph Scheduling
on Core1

O6

O7

O4

O1 O2

O8

O5

O3

O1 a1 = 2;
O2 b1 = 3;
O3 c1 = 4;
O4 a2 = a1 – b1;
O7 b2 = a2 + b1;
O6 e1 = a2 + b1;
O5 d1 = b1 * c1;
O8 b3 = e1 * b2;

Source Code 2

Scheduling
on Core1

O6

O5

O4

O1 O2

O8

O7

O3

exec. time = 4exec. time = 5

Invert instructions
O7 and O5

About the Order of Instruction (1/2)

20

O1 a1 = 2;
O2 b1 = 3;
O3 c1 = 4;
O4 a2 = a1 – b1;
O5 d1 = b1 * c1;
O6 e1 = a2 + b1;
O7 b2 = a2 + b1;
O8 b3 = e1 * b2;

O6 O7

O4

O1 O2

O8

O5

O3

Source Code 1

Data-Flow Graph Scheduling
on Core1

O6

O7

O4

O1 O2

O8

O5

O3

O1 a1 = 2;
O2 b1 = 3;
O3 c1 = 4;
O4 a2 = a1 – b1;
O7 b2 = a2 + b1;
O6 e1 = a2 + b1;
O5 d1 = b1 * c1;
O8 b3 = e1 * b2;

Source Code 2

Scheduling
on Core1

O6

O5

O4

O1 O2

O8

O7

O3

exec. time = 4exec. time = 5

Invert instructions
O7 and O5

This can be done
by the compiler

About the Order of Instructions (2/2)

• We can only change the order of
instructions that have no data dependence
– A wrong order would break the program
– This can be checked on the DFG (see figure at

right)

• But anyway, we can’t expect much speedup
from such technique
– Previous slide: only 20% faster
– In practice, real improvements are of the same

order (10~20%)

• Other technique to improve IPC: use vector
instructions
– We can expect speedups up to several times
– Example of Haswell architecture: up to 8 times

21

O6 O7

O4

O1 O2

O8

O5

O3

We can invert

O6 O7

O4

O1 O2

O8

O5

O3

We can’t invert

About Vector Instructions

• Processors usually perform scalar operations
– One operation per computation unit per cycle

– The notions of operation and instruction are the same

– Example: a = b +c

• But they can also perform vector operations
– More than one identical operation per computation unit

per cycle

– Width of vectors = number of operation

– One instruction now performs more than one operation

– Limitation: all the operations should be the same

– Example: a[1:8] = b[1:8] + c[1:8]

22

8 operations in 1 instruction !
The ILP is now 8 !

PROGRAM AND OPTIMIZE FOR
VECTOR INSTRUCTIONS (SIMD)

23

Digression: Flynn’s Taxonomy (1966)

Single
Instruction

Multiple
Instruction

Single
Data

SISD
(Scalar

Instructions)

MISD
(Very

Uncommon)

Multiple
Data

SIMD
(Vector

Instructions)

MIMD
(VLIW,

superscalar)

24

t=1 a1 = b1 + c1
t=2 a2 = b2 + c2
t=3 a3 = b3 * c3

t=1 [a1, a2] = [b1, b2] + [c1, c2]
t=2 a3 = b3 * c3

t=1 a1 = b1 + c1; a2 = b2 + c2; a3 = b3 * c3

SISD: 3 cycles

SIMD: 2 cycles

MIMD: 1 cycle

SISD corresponds to a core
with one computation unit

We can execute all the “+”
at the same time (but not

the “*”)

We can do everything at the same time, providing
we have enough parallel computation units.

Digression: Flynn’s Taxonomy (1966)

Single
Instruction

Multiple
Instruction

Single
Data

SISD
(Scalar

Instructions)

MISD
(Very

Uncommon)

Multiple
Data

SIMD
(Vector

Instructions)

MIMD
(VLIW,

superscalar)

25

t=1 a1 = b1 + c1
t=2 a2 = b2 + c2
t=3 a3 = b3 * c3

t=1 [a1, a2] = [b1, b2] + [c1, c2]
t=2 a3 = b3 * c3

t=1 a1 = b1 + c1; a2 = b2 + c2; a3 = b3 * c3

SISD: 3 cycles

SIMD: 2 cycles

MIMD: 1 cycle

We can execute all the “+”
at the same time (but not

the “*”)

Vector vs. Scalar (1/2)
Scalar Instructions

26

Instruction
Decode

Scalar
Computation

Unit
Write Back

I1

Memory

D1

D2

D3

D4

I2

I3

I4

Process D1
Process D2
Process D3
Process D4

Equivalent Scalar Program

Where
• “Process“ is an operation (e.g.

addition)
• The “Ix” are identical instructions

corresponding to each Process
• The “Di” are data (e.g. two

numbers for an addition)

Vector vs. Scalar (1/2)
Scalar Instructions

27

Instruction
Decode

Scalar
Computation

Unit
Write Back

I1

Memory

D1

D2

D3

D4

I2

I3

I4

Process D1,D2,D3,D4

Equivalent SIMD Program

Where
• “Process“ is an operation (e.g.

addition)
• The “I1” is an instruction
• The “Di” are data (e.g. two

numbers for an addition)

Vector vs. Scalar (1/2)
Scalar Instructions

28

Instruction
Decode

Scalar
Computation

Unit
Write Back

I1

Memory

D1

D2

D3

D4

I2

I3

I4

Process D1,D2,D3,D4

Equivalent SIMD Program

Where
• “Process“ is an operation (e.g.

addition)
• The “I1” is an instruction
• The “Di” are data (e.g. two

numbers for an addition)

4 clock cycles 1 clock cycle

How to Program for
SIMD Instructions ? (1/3)

29

int a[16];
int b[16];
int c[16];
int i;
for (i=0;i<16;i++) {
a[i] = b[i]+c[i]

}

Scalar Program (C)

int a[16];
int b[16];
int c[16];
int i;
a = b + c;

SIMD Program
(Pseudo Code)

𝑎0,0 ⋯ 𝑎15,0
⋮ ⋱ ⋮

𝑎0,15 ⋯ 𝑎15,15
=

𝑏0,0 ⋯ 𝑏15,0
⋮ ⋱ ⋮

𝑏0,15 ⋯ 𝑏15,15

+

𝑐0,0 ⋯ 𝑐15,0
⋮ ⋱ ⋮

𝑐0,15 ⋯ 𝑐15,15

Yes, but No.
We want to write that, but C does
not support such syntax.
(note: other languages like Fortran can)

How to Program for
SIMD Instructions ? (2/3)

30

int a[16];
int b[16];
int c[16];
int i;
for (i=0;i<16;i++) {
a[i] = b[i]+c[i]

}

Scalar Program (C)

int a[16];
int b[16];
int c[16];
int i;
ADD16(a,b,c);

Solution 1:
Insert by hand

𝑎0,0 ⋯ 𝑎15,0
⋮ ⋱ ⋮

𝑎0,15 ⋯ 𝑎15,15
=

𝑏0,0 ⋯ 𝑏15,0
⋮ ⋱ ⋮

𝑏0,15 ⋯ 𝑏15,15

+

𝑐0,0 ⋯ 𝑐15,0
⋮ ⋱ ⋮

𝑐0,15 ⋯ 𝑐15,15

ADD16(.,.,.):
• Function call to a library provided by the

processor vendor (e.g. Intel, ARM)
• Not in the C standard library
• Depend on the processor: the code is not

portable anymore

How to Program for
SIMD Instructions ? (2/3)

31

int a[16];
int b[16];
int c[16];
int i;
for (i=0;i<16;i++) {
a[i] = b[i]+c[i]

}

Scalar Program (C)

int a[16];
int b[16];
int c[16];
int i;
ADD16(a,b,c);

Solution 1:
Insert by hand

𝑎0,0 ⋯ 𝑎15,0
⋮ ⋱ ⋮

𝑎0,15 ⋯ 𝑎15,15
=

𝑏0,0 ⋯ 𝑏15,0
⋮ ⋱ ⋮

𝑏0,15 ⋯ 𝑏15,15

+

𝑐0,0 ⋯ 𝑐15,0
⋮ ⋱ ⋮

𝑐0,15 ⋯ 𝑐15,15

ADD16(.,.,.):
• Function call to a library provided by the

processor vendor (e.g. Intel, ARM)
• Not in the C standard library
• Depend on the processor: the code is not

portable anymore

Benefits
• Save time for the programmer
• Keep the code portable (you

can compile and execute the same C
program in Intel and ARM processor
for example)

How to Program for
SIMD Instructions ? (2/3)

32

int a[16];
int b[16];
int c[16];
int i;
for (i=0;i<16;i++) {
a[i] = b[i]+c[i]

}

Scalar Program (C)

int a[16];
int b[16];
int c[16];
int i;
ADD16(a,b,c);

Solution 1:
Insert by hand

𝑎0,0 ⋯ 𝑎15,0
⋮ ⋱ ⋮

𝑎0,15 ⋯ 𝑎15,15
=

𝑏0,0 ⋯ 𝑏15,0
⋮ ⋱ ⋮

𝑏0,15 ⋯ 𝑏15,15

+

𝑐0,0 ⋯ 𝑐15,0
⋮ ⋱ ⋮

𝑐0,15 ⋯ 𝑐15,15

ADD16(.,.,.):
• Function call to a library provided by the

processor vendor (e.g. Intel, ARM)
• Not in the C standard library
• Depend on the processor: the code is not

portable anymore

Benefits
• Save time for the programmer
• Keep the code portable (you

can compile and execute the same C
program in Intel and ARM processor
for example)

How to Program for
SIMD Instructions ? (3/4)

33

int a[16];
int b[16];
int c[16];
int i;
for (i=0;i<16;i++) {

a[i] = b[i]+c[i];
}

Scalar Program (C)

int a[16];
int b[16];
int c[16];
a[0] = b[0] + c[0];
a[1] = b[1] + c[1];
…
a[15] = b[15] + c[15];

Solution 2: Unroll to increase ILP
and trust Basic Block Vectorization

𝑎0,0 ⋯ 𝑎15,0
⋮ ⋱ ⋮

𝑎0,15 ⋯ 𝑎15,15
=

𝑏0,0 ⋯ 𝑏15,0
⋮ ⋱ ⋮

𝑏0,15 ⋯ 𝑏15,15

+

𝑐0,0 ⋯ 𝑐15,0
⋮ ⋱ ⋮

𝑐0,15 ⋯ 𝑐15,15

16 Identical
Operations

Automatic Basic-Block Vectorization

34

O1 int a[16];
02 int b[16];
O3 int c[16];
O4 a[0] = b[0] + c[0];
O5 a[1] = b[1] + c[1];
O6 ~ O18 …
O19 a[15] = b[15] + c[15];

Unrolled Program

O2O1 O3

O4 O5 … O19

Data Flow Graph

(Loop Unrolling) Automatic Basic Block Vectorization
(from the DFG)

Loop unrolling might be done:
• by hand (very tedious)
• by the compiler (automatically)
Loop unrolling is not mandatory
but it increases the success of the
transformation (by increasing the
ILP in the body of the loop).

Identical operations with no
dependency between each
other inside a basic block are
“vectorized”.

int a[16];
int b[16];
int c[16];
ADD16(a,b,c)

Pseudo-Code

How to Program for
SIMD Instructions ? (4/4)

35

int a[16];
int b[16];
int c[16];
int i;
for (i=0;i<16;i++) {

a[i] = b[i]+c[i];
}

Scalar Program (C)

Solution 3:

Trust Loop-
Vectorization

𝑎0,0 ⋯ 𝑎15,0
⋮ ⋱ ⋮

𝑎0,15 ⋯ 𝑎15,15
=

𝑏0,0 ⋯ 𝑏15,0
⋮ ⋱ ⋮

𝑏0,15 ⋯ 𝑏15,15

+

𝑐0,0 ⋯ 𝑐15,0
⋮ ⋱ ⋮

𝑐0,15 ⋯ 𝑐15,15

Automatic Loop Vectorization

36

int a[16];
int b[16];
int c[16];
int i;
for (i=0;i<16;i++) {

a[i] = b[i]+c[i];
}

Scalar Program (C)
Detect Boundaries
Between 0 and 16

Detect Operation
Addition

Generate SIMD Instruction
ADD16

Detect For Loop

Implemented by most compilers.
Completely automatic.
This is the best solution in order to
vectorize

Conclusion on Programing for Vector
Instructions

• Vector instructions
– SIMD programing model from Flynn’s taxonomy

– Single Instruction Multiple Data

• Easy and cheap way to accelerate programs
– Example of Haswell architecture: 256 bits vectors, that

is, 8 simultaneous operations on 32-bit data (words or
floating point)

• Usually generated by the compiler
– Automatic basic block vectorization

– Automatic loop vectorization

37

AUTOMATIC VECTORIZATION:
ISSUES AND CHALLENGES

You thought it was easy huh ???

38

Why we can’t always Vectorize

• Vectorization is very powerful
• However, it is not always possible to vectorize
• First situation:

– The code is vectorizable, but the compiler fails to vectorize it
– Solution 1: insert vector function calls by hand
– Solution 2: modify the code

• Second situation:
– The algorithm is not vectorizable
– Nothing can be done

• Third situation:
– The code can be vectorized, but it is slower with vectors

39

First Challenge

40

The code should be “Simple”

for (i=0;i<16;i++) {
a[i] = b[i]+c[i];

}

int function(int M) {
for (i=0;i<M;i++) {
a[i] = b[i]+c[i];

}
}

int M;
for (i=0;i<cos(M);i++) {
a[i] = b[i]+c[i];

}

Dangerous.
The compiler needs to know the value of M.
Some compilers still generate vectors by adding

conditions before the loop
Can be solved by the compiler with constant

propagation and function inlining.

Bad.
The boundaries of the for loop are complex.
Most compilers will fail to vectorize this

code.

OK.
Example of previous section

First or Second Situation: the code is sometimes vectorizable if modified

First Challenge

41

The code should be “Simple”

for (i=0;i<16;i++) {
a[i] = b[i]+c[i]

}

int function(int M) {
for (i=0;i<M;i++) {
a[i] = b[i]+c[i]

}
}

int M;
for (i=0;i<cos(M);i++) {
a[i] = b[i]+c[i]

}

Dangerous.
The compiler needs to know the value of M.
Some compilers still generate vectors by adding

conditions before the loop
Can be solved by the compiler with constant

propagation and function inlining.

Bad.
The boundaries of the for loop are complex.
Most compilers will fail to vectorize this

code.

OK.
Example of previous section

It depends on the compiler.
Intel Compiler is the smartest.
GCC is not too bad either.
LLVM still lags behind.

Second Challenge

42

The loop should not contain complex operations

for (i=0;i<16;i++) {
a[i] = b[i]+c[i];
NON VECTORIZABLE CODE

}

Bad.
It contains non-vectorizable code (e.g.

function call)

for (i=0;i<16;i++) {
a[i] = b[i]+c[i];

}
for (i=0;i<16;i++) {
NON VECTORIZABLE CODE

}

Solution.
Cut the loop in two loops to isolate the

non-vectorizable code.
This is called loop fission.
The compiler usually don’t do it

automatically.

First Situation: the code is vectorizable if modified

Third Challenge

43

The loop should not contain branches (1/2)

bool C;
for (i=0;i<16;i++) {
if(C) a[i] = b[i]+c[i];
else a[i] = b[i]-c[i];

}

Bad.
The loop body contains a “if” statement.
“If” statements are a special example of

non-vectorizable code.

if(C) {
for (i=0;i<16;i++) {
a[i] = b[i]+c[i];

}
}
else {
for (i=0;i<16;i++) {
a[i] = b[i]-c[i];

}
}

Solution.
Put the branch outside the loop.
This is called loop unswitching.
The compiler often does it automatically.
It is not possible to do if the condition depends

on loop variables (see next slide)

First or Second Situation: the code is sometimes vectorizable if modified

Fourth Challenge

44

The loop should not contain branches (2/2)

for (i=0;i<16;i++) {
if(i<8) a[i] = b[i]+c[i];
else a[i] = b[i]-c[i];

}

Bad.
It contains non-vectorizable code (e.g. function

call)

for (i=0;i<8;i++) {
a[i] = b[i]+c[i];

}
for (i=8;i<16;i++) {
a[i] = b[i]-c[i];

}

Solution.
Cut the loop in two loops (one per branch).
This is another kind of loop fission.
The compiler never does it automatically.

First or Second Situation: the code is sometimes vectorizable if modified

This is however an easy example; such
transformation is often impossible to apply.

Fifth Challenge

45

Loop-carried Dependencies

for (i=1;i<16;i++) {
a[i] = a[i-1]+c[i];

}

Bad (second situation)
The calculation depends on the result of a

previous loop iteration, therefore we
can’t vectorize

for (i=0;i<15;i++) {
a[i] = a[i+1]+c[i];

}

Dangerous (first situation).
The calculation does not depend on the

result of other calculation, but it is similar
to such codes.

Many compilers will fail to vectorize this
code.

More on Next Slides…

State of the Memory

Loop-Carried Dependencies (1/3)

46

for (i=1;i<5;i++) {
a[i] = a[i-1]+c[i];

}

a[1] = a[0]+c[1];
a[2] = a[1]+c[2];
a[3] = a[2]+c[3];
a[4] = a[3]+c[4];

a=[1,1,1,1,1], c=[2,2,2,2,2]
a=[1,3,1,1,1]
a=[1,3,5,1,1]
a=[1,3,5,7,1]
a=[1,3,5,7,9]

a[1:4] = a[0:3]+c[1:4];

State of the Memory

a=[1,1,1,1,1], c=[2,2,2,2,2]
a=[1,3,3,3,3]

Original Program

Unrolled Program

Vectorized Program

Correct Result

a=[1,3,5,7,9]

The result is wrong !

State of the Memory

Loop-Carried Dependencies (1/3)

47

for (i=1;i<5;i++) {
a[i] = a[i-1]+c[i];

}

a[1] = a[0]+c[1];
a[2] = a[1]+c[2];
a[3] = a[2]+c[3];
a[4] = a[3]+c[4];

a=[1,1,1,1,1], c=[2,2,2,2,2]
a=[1,3,1,1,1]
a=[1,3,5,1,1]
a=[1,3,5,7,1]
a=[1,3,5,7,9]

a[1:4] = a[0:3]+c[1:4];

State of the Memory

a=[1,1,1,1,1], c=[2,2,2,2,2]
a=[1,3,3,3,3]

Original Program

Unrolled Program

Vectorized Program

Correct Result

a=[1,3,5,7,9]

The vectorized program does not
return the correct result.

This is because the calculation are
not performed in the correct order.

Such program cannot be vectorized
(second situation)

State of the Memory

Loop-Carried Dependencies (2/3)

48

for (i=0;i<4;i++) {
a[i] = a[i+1]+c[i];

}

a[0] = a[1]+c[0];
a[1] = a[2]+c[1];
a[2] = a[3]+c[2];
a[3] = a[4]+c[3];

a=[1,1,1,1,1], c=[2,2,2,2,2]
a=[3,1,1,1,1]
a=[3,3,1,1,1]
a=[3,3,3,1,1]
a=[3,3,3,3,1]

a[0:3] = a[1:4]+c[0:3];

State of the Memory

a=[1,1,1,1,1], c=[2,2,2,2,2]
a=[3,3,3,3,1]

Original Program

Unrolled Program

Vectorized Program

Correct Result

a=[3,3,3,3,1]

The result is correct !

We have a “+” instead
of a “-” before

Loop-Carried Dependencies (3/3)

• Expresses the data dependencies between iteration of a loop
– Same kind of dependency as for the data-flow graph: RAW (Read After

Write), WAR (Write After Read), RAR (Read After Read), WAW (Write After Read)

– Similar to the DFG of the unrolled loop

• Example with some loops of the previous slides:

49

i
i i+1i-1

for (i=0;i<16;i++) {
a[i] = a[i-1]+c[i];

}

RAW Dependency
(Read After Write)

i
i i+1i-1

for (i=0;i<16;i++) {
a[i] = a[i+1]+c[i];

}

WAR Dependency
(Write After Read)

The Loop-carried-Dependency Graph (1/2)

RAR RAW

WAR WAW

WAW does not prevent
vectorization by itself, but
the ordering of SIMD
instruction is then important.
(anyway WAW is very rare)

It is always OK to
ignore it

The reference node is the node that reads

Loop-Carried Dependencies (3/3)

50

i
i i+1i-1

for (i=0;i<16;i++) {
for (j=0; j<16; j++)
a[i][j] = a[i-1][j+1]+c[i];

}
}

RAW Dependency
(Read After Write)

j

j-1

j+1

The Loop-carried-Dependency Graph (2/2)

Example in 2D

for (i=0;i<16;i++) {
for (j=0; j<16; j++)
a[i][j]=

a[i-1][j+1]+a[i+2][j+1];
}

}

A slightly more complex example

i
i i+1i-1

RAW Dependency
(Read After Write)

WAR Dependency
(Write After Read)

j

j-1

j+1

i+2
Distance is 2

Conclusion on Vectorization
Challenges

• Vectorization is done automatically by the compiler
– Automatic basic block vectorization
– Loop vectorization
– Note: another powerful technique exists: software pipelining

• But sometimes, even though we can vectorize, the compiler fails to
vectorize because:
– The code is too “complex” (the meaning of “complex” depends on the

compiler)
– The code contains non-vectorizable code
– The code contains branches

• In many situations, the code can be vectorizable by modifying the code by
hand

• However, some code is not vectorizable
– The code contains branches that depends on value calculated inside the loop
– The code contains WAR loop-carried dependency

• Remains a third situation:
– The code is vectorizable, but run slower with SIMD instructions
– See next section…

51

VECTORS AND MEMORY ACCESSES

52

The Memory Wall:
Slide form Prof. Inoue

53

First Wall: the ILP Wall
Programs often don’t exhibit high ILP.
Can be partially addressed using SIMD

Second Wall: the frequency Wall
We can’t raise the frequency because it
consumes too much power.
No solution (see slide 5)

Third Wall: the memory Wall
Cores cannot access data as fast as they
compute on them.
Also happens with SIMD!

Break the Memory Wall:
The Memory Hierarchy (1/2)

• The SIMD computation units do not access the
main memory directly
– Its latency is too high (>100 cycles)

• They operate on a dedicated register file
– Temporal locality: accelerate neighbor calculations on

the same data
– Example of Intel Haswell: 16 registers of 256 bits each

(=4Kb)

• They use the same data caches as the scalar
computation units
– Temporal locality: accelerate neighbor calculations on

the same data
– Spatial locality: accelerate neighbor calculations on

neighbor data
– Example of Intel Haswell: 32Kb (Level 1) + 256Kb (Level

2) per core

• Point of view of the ISA
– Data are explicitly loaded from the main memory to

the SIMD register file
– The cache is not visible to the ISA

54

SIMD Computation Unit

Main Memory

Data Cache

SIMD Register File

Break the Memory Wall:
The Memory Hierarchy (2/2)

55

Line1

SIMD1

Data Cache

SIMD Register File

SIMD Computation Unit

Main Memory

I1 Load A[0:3] to register file SIMD1

I2 Load A[4:7] to register file SIMD2

I3 Calculate SIMD3 = SIMD1 + SIMD2

I4 Calculate SIMD4 = SIMD3 + SIMD2

SIMD2

SIMD3

A[4] A[5] A[6] A[7]

B[4] B[5] B[6] B[7]

Line2

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[0] A[1] A[2] A[3]

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

B[0] B[1] B[2] B[3]

C[0] C[1] C[2] D[3]

I1: memory read

I1: cache read

I2: cache read

I3: register file read

I3: calculation

I4: register file read

I4: calculation

We read a whole cache line instead of only
the data (spatial locality of cache)

The second instruction does not need to
access the memory (spatial locality of cache)

The second calculation does not need to read
the memory or the cache (temporal locality of
register file)

The Program

The Operations

Limitations of the Memory Hierarchy
Aligned Accesses (1/3)

• Most SIMD core architectures
only allow to read vectors from
cache aligned with cache lines
– The vector should start at the

beginning of a cache line
– Example: Fujitsu SPARC64 XII fx

(K Computer)

• Other work with non-aligned
data, but slower
– Read non-aligned data requires

many cycles
– Example: Intel Haswell

• The same limitation exists when
data is read from main memory

56

Line1

Data Cache

Line2

A[0] A[1] A[2] A[3]

A[4] A[5] A[6] A[7]

SIMD1 = A[0:3]

Aligned Access
1 clock cycle

SIMD1 = A[2:5]

Unaligned Access

A least 3 clock cycles:
cycle 1: read A[2:3]
cycle 2: read A[4:5]
cycle 3: concatenate A[2:3] and

A[4:5] in SIMD1

Limitations of the Memory Hierarchy
Aligned Accesses (1/3)

• Most SIMD core architectures
only allow to read vectors from
cache aligned with cache lines
– The vector should start at the

beginning of a cache line
– Example: Fujitsu SPARC64 XII fx

(K Computer)

• Other work with non-aligned
data, but slower
– Read non-aligned data requires

many cycles
– Example: Intel Haswell

• The same limitation exists when
data is read from main memory

57

Line1

Data Cache

Line2

A[0] A[1] A[2] A[3]

A[4] A[5] A[6] A[7]

SIMD1 = A[0:3]

Aligned Access
1 clock cycle

SIMD1 = A[2:5]

Unaligned Access

A least 3 clock cycles:
cycle 1: read A[2:3]
cycle 2: read A[4:5]
cycle 3: concatenate A[2:3] and

A[4:5] in SIMD1

Because without them the hardware
would have been:
• too expensive to design
• too hard (impossible) to manufacture
• … and too easy to program for

Why hardware engineers
included such limitations ?

嫌味

int my_function(){
static int a[32];
int i;
for (i=0; i<32; i++) a[i]++;

}

Limitations of the Memory Hierarchy
Aligned Accesses (2/3)

58

Example 1
We consider a cache
line of 128 bits (4
integers)

int my_function(){
int a[32];
int i;
for (i=0; i<32; i++) a[i]++;

}

int my_function(){
static int a[32] __attribute__((aligned(0x1000)));
int i;
for (i=0; i<32; i++) a[i]++;

}

This should be slow
“a” is in the stack, which is likely
not to be aligned

This may be slow
“a” is not in the stack, but we don’t know if it
will be aligned or not
(note: e can also declare “a” global)

This will be fast (loop vectorization)

We force alignment with the attribute “aligned” (gcc
only, other compilers may use different keywords)

Solution: “align” gcc attribute

Limitations of the Memory Hierarchy
Aligned Accesses (3/3)

59

Example 2
We still consider a
cache line of 128 bits
(4 integers)

int my_function(){
static int a[32][10] __attribute__((aligned(0x1000)));
int i,j;
for (i=0; i<10; i++)
for (j=0; j<32; i++)
a[i][j]++;

}

int my_function(){
static int a[32][12] __attribute__((aligned(0x1000)));
int i,j;
for (i=0; i<10; i++)
for (j=0; j<32; i++)
a[i][j]++;

}

This will be slow
The address of “a[1][0]” is not aligned !

Solution: array padding

This will be fast
Now the address of “a[1][0]” is aligned.

Note:
&a[0][0] = 0 % 128 bits
&a[1][0] = 64 % 128 bits
&a[2][0] = 0 % 128 bits
&a[3][0] = 64 % 128 bits
(it should be 0 everywhere)

Note:
&a[0][0] = 0 % 128 bits
&a[1][0] = 0 % 128 bits
&a[2][0] = 0 % 128 bits
&a[3][0] = 0 % 128 bits

Today’s Conclusion
• Compiler can accelerate single-thread performance by raising the ILP of

programs
– Instruction Level Parallelism

• The most efficient method to do so is to use vector operations
– Also called SIMD instructions (Flynn’s taxonomy)
– Only possible if the target core architecture supports it

• The compiler is able to generate SIMD instructions from normal C code
– Two techniques today: basic block vectorization and loop vectorization
– Only if the algorithm allows it
– Sometimes we need to change to C program so that the compiler can better

understand it and generate vectors

• Still, even with SIMD we hit the memory wall
– We cannot access the memory as fast as we do SIMD calculation
– Modern architecture use cache and register files
– But those have many limitations that we need to understand

• Not everything has been said
– Another automatic vectorization method: loop pipelining
– Another restriction to automatic vectorization: memory aliasing (you may

want to check the keyword “restrict” of C) 60

THANK YOU VERY MUCH
Any questions ?

61

