Instruction-Level Parallelism
and
Automatic Vectorization

Antoine Trouveé
7RIV MILDT
trouve@isit.or.jp
2014/06/23

Execution Time

 Reminder: what is a thread
— A sequence of instruction
— Traditionally programs used to be made of one thread
— Modern programs use threads in order to parallelize calculations

* Execution time of a multi-thread program

— Decided by the execution time of the threads on the critical path
— It can be reduced by raising single thread performances

time = time(thread,) + max(time (threadlji)) + time(thread,)
l

A Synchronization

threads

thread,

~

thread, ,

thread, ;

thread, ,

thread, 5

thread,

Legend

Thread not on the critical path
[]
Thread on the critical path

[1

time

>

threads

threads

3
S
g
s
*

How to Raise Performances ?

thread,
-

thread, ,

thread, ,
.

thread, ,
.

thread, 5

11 cycles

thread,

L A TN SN

>

time

A
thread, ,
[]
thread, ; Legend
: Thread not on the critical path
thread, , 15 CYCIES | |
[Thread on the critical path
thread, thread, ; thread, ' '
[] | L 1 [|
- >
time
thread, ,,
A Cm Method 1: Use more threads
thread, g, . . .
ES—— By doing so, we raise the thread-level parallelism.
_thread, ; However, it is not always possible to do.
thread, , Not always efficient (Amdahl law)
thread, .. 13 cycles Moreover, it is hard to do automatically inside the
thread, thread, » thread, compiler: the programmer should do it himself !

Example: cut thread, , and thread, ; in half.

Method 2: Raise single-thread performances

Depends on both the hardware and the software.

See next slide...

Example: 1.36 times faster single-thread
performances = 1.36 times faster program

About Single-Thread Performances

* What are single-thread performances ?

— The speed at which a given computing core
executes sequential instructions

* How do we calculate it ?

instruction instruction cycle
= X =—— = [PC X freq

time cycle ti

Raise Single Threads Performances
(1) Can we Raise the Frequency ?

Single Thread Performance = IPC X freq

10 —_— I e .,A, e ————————— - - e —
Jotyy—nsovoL—k) y
™ & 4 Cores | I
Y- ""m ol T x
. =2 Cores i ').d
’uﬁ . o })
'Il i-‘%ir / -
| B 2 100 | . 7 /)l"
e The frequency of processors g Mqa|n|y because oy/ / 5
stopped to faise around 2005. 3" erponential po y -
0.01 W D 4 — >
ny., < 5 consumptio
= w 4 — = 0.3
0.001 7 = =
e
¥4
00 00 200 3 400 3
0.0001 S R o e

1970 1975 1980 1985 1990 1995 2000 2005 2010
Source: http://blog.stuffedcow.net/

Source: Hakata Intel Software Conference 2012

Raising Single Threads Performances
(2 Can we Raise the IPC ?

Single Thread Performance = IPC X freq

Definition of the IPC

— Instruction Per Cycle

— The amount of calculation the core is performing per cycle for a
given program

The higher the IPC, the faster
The IPC is calculated as follows:

number of instructions executed

— IPC = number of cycles
It can be raised by

— Reducing the number of instructions
— Raising the amount of work the processor can do per cycle

HARDWARE PEAK IPC AND ILP

Starting Point: the IPC

Recap from previous slide
— Instruction Per Cycle
— The amount of calculation the core is performing per cycle for a given program
— The higher the IPC, the faster the program

The IPC is calculated as follows:

number of instructions executed

- IPC= number of cycles
For a given hardware and program, the IPC depends on
— the hardware peak IPC (IPC,,,)
— the software Instruction Level Parallelism (ILP)
— the scheduling algorithm used by the core to execute instructions

The maximum IPC can be defined as:

IPC <| min(IPCpeq, ILP)

10

About the Hardware Peak IPC (1/2)

It is the maximum number of instructions that a computing core
can execute per cycle

It depends on the amount of computation units in the core
* Schematic examples (see figures below)

— Core 1: IPCIDeak =1
— Core 2: IPCpeak =
Core 1l
Instruction Instruction Computation » e B
Memory Decode Unit 1
Core 2
Computation » Legend |
Instruction . Unit 1 Instruction flow
structio Instruction NV s
Memory Decode

Computation »
Unit 2

11

About the Hardware Peak IPC (1/2)

0 340d

T Mod

Z Mod

€ 1od

v 10d

S Mod

9 Mod
PR
Zviod

2xFMA
Doubles peak FLOPs
Two FP multiplies
benefits legacy

4th ALU
- Great for integer workloads

* ZU COMpUut New AGU for Stores
» Reduces Part) Caonflicte ~ l=aaves Port 2 & 3
- 2nd EU for high branch code open for Loads

nits)

12 Intel® Microarchitecture (Haswell)

Source: Intel Software Cor ' -/It-is too complex to calculate the Peak IPC, we need to approximate
* Peak IPC = 8 might be a reasonable approximation here (if we
consider vector instructions as a single operation)

12

About the ILP (1/2)

e Definition of ILP
— Instruction-Level-Parallelism

— The maximum number of instructions that can be executed in parallel, as constrained
by data dependencies

— We also use the term Data-Level-Parallelism

— Itis a hardware independent metrics

— The higher the ILP, the more we can expect to reduce the execution time
* How to calculateit?

1. Generate the data-flow graph of the program

2. Calculate its width (depends on the scheduling algorithm)

Data Flow Graph (DFG)

Program SSA Form

a = 2; al = 2;

b = 3; bl = 3;

c = 4; cl = 4;

a=a - b; a2 = al - bl;

d=Db * c; »d1=b1 cl;

e = a + b; el = a2 + bl;

b =a + b; b2 = a2 + bl;

b =e * b; b3 = el * b2;

About the ILP (2/2)
Example of ASAP Scheduling

=

ILP
>

time l Width = 3 \

Note:

We can find a scheduling with
width=2 and the same
execution time for this program

14

Execution Example (1/2)
Machine with hwiPC =2

Program

Source Code (1 thread) Core 1 (ASAP Scheduling, 2 CUs)
0l al = 2; Computation »
gg bi _ Z; Instruction unit 1

cl = 4; _
04 a2 = al - bl; Decode : Write Back
05 dl = bl * c1; Computation »
06 el = a2 + bl; Unit 2
07 b2 = a2 + bil;
08 b3 = el * b2;

Scheduling on Corel

Data-Flow Graph

l W=2

ASAP Scheduling

W=3

exec. time =4 exec.time=5

15

Execution Example (2/2)
Calculation of the IPC

Program. ASAP width =3

Core 1. hwilPC =2

Computation

. Unit 1
Instruction

Decode :
Computation

Unit 2

~

Write Back

™

Execution on Core 1.

time

=

ILP =

8 operations

5 cycles

=16<2

16

Conclusion on ILP / IPC

 The IPC determines single-thread efficiency
— |PC = Instruction per Cycle
— The higher the IPC, the faster

 The IPCis always lower than

— The hardware Peak IPC

— The software intrinsic ILP (Instruction-Level
Parallelism)

e How to raise the IPC?
— Bad: The hardware IPC is fixed
[— Good: The compiler can raise the software ILP]

17

IPC AND OPTIMIZATION

About the Order of Instruction (1/2)

Source Code 1

ol
02
03
04
05
06
o7
08

al
bl
cl
a2
dl
el
b2
b3

2;
3;
4;
al - bl;
bl * cl;
a2 + bl;
a2 + bl;
el * b2;

Data-Flow Graph

Core 1 (AsAP scheduling, 2 CUs)

Source Code 2

01 al = 2;
Computation » 02 bl = 3;
, Unit 1 03 cl = 4;
In;trucglon Write Back 04 a2 = al - bl;
ecode) =
Computation » (gg Zi _ Zg I Ei
unit 2 05 dl = bl * cl;
08 b3 = el * b2;
Scheduling Scheduling
on Corel on Corel

&
]

exec.time =5

exec. time =4

19

About the Order of Instruction (1/2)

About the Order of Instructions (2/2)

We can only change the order of
instructions that have no data dependence

— A wrong order would break the program

— This can be checked on the DFG (see figure at

right) ~

But anyway, we can’t expect much speedup
from such technique

— Previous slide: only 20% faster
— In practice, real improvements are of the same
order (10~20%)
Other technique to improve IPC: use vector
instructions

— We can expect speedups up to several times

— Example of Haswell architecture: up to 8 times , _||

About Vector Instructions

* Processors usually perform scalar operations
— One operation per computation unit per cycle
— The notions of operation and instruction are the same
— Example: a=b +c

e But they can also perform vector operations

— More than one identical operation per computation unit
per cycle

— Width of vectors = number of operation

— One instruction now performs more than one operation
— Limitation: all the operations should be the same

— Example: a[1:8] = b[1:8] + c[1:8

PROGRAM AND OPTIMIZE FOR
VECTOR INSTRUCTIONS (SIMD)

Digression: Flynn’s Taxonomy (1966)

Single

Instruction

Single SISD

Data (Scalar
Instructions)

SIMD

Multiple
Data (Vector
Instructions)

Multiple
Instruction

MISD

(Very

Uncommon)

MIMD
(VLIW,

superscalar)

SISD: 3 cycles SI§D corresponds tc? a corfe
with one computation unit

=1al=bl+cl

ey Xy y Yyl \We can execute all the “+”
Pl e E Nl at the same time (but not

the /1*//)

SIMD: 2 cycles

=1 [al, a2] = [b1, b2] + [c1, c2]

t=2a3=b3 *c3

MIMD: 1 cycle

=lal=bl+cl;a2=b2+c2;a3=b3*c3

We can do everything at the same time, providing

we have enough parallel computation units.

24

Digression: Flynn’s Taxonomy (1966)

Single Multiple
We can execute all the “+~
at the same time (but not

Instruction Instruction

(K2
SIMD: 2 cycles the =
t=1[al, a2] = [bl, b2] + [c1, c2]
=2a3=b3 *c3

Multiple SIMD

Data (Vector
Instructions)

25

Vector vs. Scalar (1/2)
Scalar Instructions

Instruction
Decode

*Computation * Write Back

Scalar

Unit

Equivalent Scalar Program

Where
“Process” is an operation (e.g.
addition)

Process D1
Process D2
Process D3
Process D4

The “Ix” are identical instructions
corresponding to each Process
The “Di” are data (e.g. two
numbers for an addition)

26

Vector vs. Scalar (1/2)
Scalar Instructions

Instruction SEElEn
*Computation * Write Back
Decode Unit

Equivalent SIMD Program

Process D1,D2,D3,D4 Where
- * “Process” is an operation (e.g.
addition)

Equivalent Scalar Program
The “11” is an instruction

The “Di” are data (e.g. two
numbers for an addition)

Pracess
p

Pr 3
cess

27

Vector vs. Scalar (1/2)
Scalar Instructions

4 clock cycles B 1 clock cycle

How to Program for
SIMD Instructions ? (1/3)

< Qo0 - Q150) boo -+ bisp (Coo Ci150)
: S — : : +[¢ :
Ap,15 *** Q1515 bo1s -+ bisis Co1s *° C15,15

SIMD Program
Scalar Program (C) (Pseudo Code)
int a[16]; int a[l6];
int b[16]; » int b[16];
int c[16]; int c[16];
int 1; int 1;
for (1=0;1<16;i++) { a=>b + c;

a[i] = b[i1]+c[1]
}

How to Program for
SIMD Instructions ? (2/3)

bis,0 Coo ** Ci50
: + . g
bis 15 Co,15 (15,15

(ao,o a15,0> b o
Qo5 ** Q1515 bo,15

Scalar Program (C)

int a[l6];

int b[16];

int c[16];

int 1;

for (i=0;i<16;i++) {
al[i] = b[i '

}

»

Solution 1:
Insert by hand

int a[l6];
int b[16];
int c[16];
int 1;
ADD16(a,b,c);

30

How to Program for
SIMD Instructions ? (2/3)

(Qo0 ** Q150) boo * bisp (Coo Ci150 >
5 : — : : +[5
ao,15 **° Q1515 bo1s - bisis Coas *° C1515

Benefits

» Save time for the programmer

» Keep the code portable (you
can compile and execute the same C
program in Intel and ARM processor
for example)

31

How to Program for
SIMD lnctriirtinnc ? (2/3)

32

How to Program for
SIMD Instructions ? (3/4)

(Qoo - Q150) boo - bisg (Coo €150)
: : — : : + : :
Ap,15 *** A15,15 bo1s ** bisis Co1s *° C1515

Solution 2: Unroll to increase ILP

Scalar Program (C) and trust Basic Block Vectorization
int a[1l6]; int a[l6];

int b[16]; » int b[16];

int c[16]; int c[16];

int i; a[0] = b[0] + c[0];

for (i=0:i<16:i++) { a[1]
a[i] = b[i]+c[i]: .
} a[15] = b[15] + c[15];

b[1] + c[1];

Automatic Basic-Block Vectorization

Unrolled Program Data Flow Graph Pseudo-Code
0l int a[l6]; int a[16];
02 int b[16]; int b[16];
03 int c[16]; int c[16];
04 a[0] = b[0] + c[0]; ADD16(a,b,)
8(55 fgﬂ = bl1] + clil; 16 Identical

019 a[15] = b[15] + c[15]; Operations

+ Automatic Basic Block Vectorization

(Loop Unrolling) (from the DFG)

Loop unrolling might be done:
* by hand (very tedious)
* by the compiler (automatically)

Identical operations with no

dependency between each
other inside a basic block are

Loop L.lnrolling is not mandatory “vectorized”
but it increases the success of the

transformation (by increasing the
ILP in the body of the loop).

34

How to Program for
SIMD Instructions ? (4/4)

(Qoo (150) boo * bisp (Coo0 " €150)
: : — : : + : :
Ap,15 °° A1515 bo1s -+ bisis Coas *° C1515

Scalar Program (C)

int a[l6];

int b[16]; Solution 3:

int c[16]; » Trust Loop-
int 1; . ..
T el s Vectorization

alil = b[il+c[i];
}

Automatic Loop Vectorization

Detect For Loop

Scalar Program (C) +

: 167 - Detect Boundaries
! nt a[16]; Between 0 and 16
int b[16]; +

int C[7]

Detect Operation

(:=O;'i<16;'i++ Addition
a['ii=5|1EFf1=; '
}

Generate SIMD Instruction
ADD16

36

Conclusion on Programing for Vector
Instructions

* Vector instructions
— SIMD programing model from Flynn’s taxonomy
— Single Instruction Multiple Data

* Easy and cheap way to accelerate programs

— Example of Haswell architecture: 256 bits vectors, that
is, 8 simultaneous operations on 32-bit data (words or
floating point)

* Usually generated by the compiler
— Automatic basic block vectorization
— Automatic loop vectorization

You thought it was easy huh ???

AUTOMATIC VECTORIZATION:
ISSUES AND CHALLENGES

38

Why we can’t always Vectorize

Vectorization is very powerful
However, it is not always possible to vectorize

First situation:
— The code is vectorizable, but the compiler fails to vectorize it
— Solution 1: insert vector function calls by hand
— Solution 2: modify the code
Second situation:
— The algorithm is not vectorizable
— Nothing can be done
Third situation:
— The code can be vectorized, but it is slower with vectors

First Challenge

The code should be “Simple”

First or Second Situation: the code is sometimes vectorizable if modified

for (i=0;1<16;i++) {
ali]l = b[i]+c[i];

}

: : - Dangerous.

nt fun§t1 on (1 nt M { The compiler needs to know the value of M.
for §1 =0; 1 <M; 1 ++)_ { Some compilers still generate vectors by adding

ali] = b[i]+c[1]; conditions before the loop

} Can be solved by the compiler with constant

} propagation and function inlining.

int M; Bad.

for (i=0;i<cos(M);i++) { The boundaries of the for loop are complex.

alil = b[il+c[i]; Most compilers will fail to vectorize this
} code.

First Challenge

The code should be “Simple”

It depends on the compiler.
Intel Compiler is the smartest.
GCC is not too bad either.
LLVM still lags behind.

41

Second Challenge

The loop should not contain complex operations

First Situation: the code is vectorizable if modified

for (i=0;i<16:i++) {

alil = b[il+c[il; IBad- | L
NON VECTORIZABLE CODE tconta.ms non-vectorizable code (e.g.
} function call)

et

for (i=0;1<16;i++) {
ali]l = b[i]+c[i];

}

for (i=0:i<16;i++) {
NON VECTORIZABLE CODE

}

42

Third Challenge

The loop should not contain branches (1/2)

First or Second Situation: the code is sometimes vectorizable if modified

bool C; Bad.

fOI:'f(1 =0;1 <.16) 1 ;+) { . The loop body contains a “if’ statement.
1 'I (© a[i] = : [1]+cl1] : “If” statements are a special example of

. else al[i] = b[i]-c[i]; non-vectorizable code.

if(Q) {

for (i=0;1<16;i++) {
ali] = b[i]+c[i];
}
}

else {
for (i=0;1<16;i++) {
ali] = b[i]-c[i];
}
}

43

Fourth Challenge

The loop should not contain branches (2/2)

First or Second Situation: the code is sometimes vectorizable if modified
for (i=0;1<16;i++) {

iF(i<8) a[i] = b[il+c[il; Shimui _ |
else a[i] = b[i]-c[i]; It colrll;cams non-vectorizable code (e.g. function
} ca

¥

for (i=0;1<8;1++) {
ali] = b[il+c[1];
¥

for (1=8;i<16;i++) {
af1] = b[i]-c[1];
} This is however an easy example; suc
transformation is often impossible to apply.

for (i=0;i<16;i++) {
if(i*4 % 8 == 0) a[i]
else ali]

b[il+c[i];
bl[il-c[i];
} 44

Fifth Challenge

Loop-carried Dependencies

for (i=1;i<16;i++) { Bad (second situation)
ali] = a[i-1]+c[i]; The calculation depends on the result of a
} previous loop iteration, therefore we
can't vectorize
for (i=0;1<15;7++) { Dangerous (first situation).
al1] = a[i+1]+c[1]; The calculation does not depend on the

} result of other calculation, but it is similar
to such codes.
Many compilers will fail to vectorize this
code.

More on Next Slides...

45

Loop-Carried Dependencies (1/3)

Original Program

for (i=1;i<5;i++) {
al[i] = a[i-1]+c[i];
}

Unrolled Program

al[l] = a[0]+c[1];
al[2] = a[1]+c[2];
al[3] = a[2]+c[3];
al[4] = a[3]+c[4];

Vectorized Program
al[l:4] = a[0:3]+c[1:4];

Correct Result
a=[1,3,5,7,9]

State of the Memory
a=[11111111111 C=[212!2!2!2]

a=[1,3,1,1,1]
a=[1,3,5,1,1]
a=[1,3,5,7,1]
a=[1!3!5!7!9]

State of the Memory
a=[1,1,1,1,1]1, c=[2,2,2,2,2]
a=[1,3,3,3,3]

46

Loop-Carried Dependencies (1/3)

The vectorized program does not
return the correct result.
This-is because the calculation are
not performed in the correct order.

Such program cannot be vectorized

(second situation)

47

Loop-Carried Dependencies (2/3)

We have a “+” instead
of a “-” before

Original Program

for (1=0;i<4y++) {
al[i] = a[i+1]+c[i];
}

Unrolled Program

al[0] = a[1]+c[O0];
al[l] = a[2]+c[1];
al[2] = a[3]+c[2];
al[3] = a[4]+c[3];

Vectorized Program

al[0:3] = a[1l:4]+c[0:3];

Correct Result
a=[3,3,3,3,1]

State of the Memory
a=[1!1!1!1!l]’ C=[2’2525252]
a=[3,1,1,1,1]

a=[3,3,1,1,1]
a=[3,3,3,1,1]
a=[3,3,3,3,1]

State of the Memory
a=[1,1,1,1,1]1, c=[2,2,2,2,2]
a=[3,3,3,3,1]

Loop-Carried Dependencies (3/3)

* Expresses the data dependencies between iteration of a loop

— Same kind of dependency as for the data-flow graph: RAW (Read After
Write), WAR (Write After Read), RAR (Read After Read), WAW (Write After Read)

— Similar to the DFG of the unrolled loop
 Example with some loops of the previous slides:

Legend for (i=0;1<16;i++) { for (i=0;1<16;1++) {
RAR RAW Cannot vectorize al[i] = a[i-1]+c[i]; al[i] = a[i+1]+c[i];
Can vectorize } }
Dangerous
WAR WAW RAW Dependency WAR Dependency
(Read After Write) (Write After Read)
A A
—— ——H—t
i-1 [\ i+1 i-1 / i i+1

The reference node is the node that reads 49

Loop-Carried Dependencies (3/3)

Example in 2D RAW Dependency

for (i=0;1<16;i++) { T (Bead After Write)
for (j=0; j<16; j++) \D

a[i1[3] = ali-11[j+11+c[i]; iT
} Cannot vectorize
} J-_ 1 L Can vectorize

—> i

i+1
A slightly more complex example A

RAW Dependency

1
|
i
for (i=0;1<16;i++) { R \ (Read After Write)
for (j=0; j<16; j++)
<>

al1]lljl= i + | WAR Dependency
ali1-1][j+1]+a[1+2]1[7+1]; (Write After Read)

} 1 -/7

= : 1 1 1 > |

-1 0 i+1 42

Distance is 2

Conclusion on Vectorization
Challenges

Vectorization is done automatically by the compiler
— Automatic basic block vectorization
— Loop vectorization
— Note: another powerful technigue exists: software pipelining

But sometimes, even though we can vectorize, the compiler fails to
vectorize because:

— The code is too “complex” (the meaning of “complex” depends on the
compiler)

— The code contains non-vectorizable code
— The code contains branches

In many situations, the code can be vectorizable by modifying the code by
hand

However, some code is not vectorizable
— The code contains branches that depends on value calculated inside the loop
— The code contains WAR loop-carried dependency

Remains a third situation:

— The code is vectorizable, but run slower with SIMD instructions
— See next section...

VECTORS AND MEMORY ACCESSES

The Memory Wall:
Slide form Prof. Inoue

KARELTEZILD3IDNEE
Sy

First Wall: the ILP Wall
Programs often don’t exhibit high ILP.
Can be partially addressed using SIMD

Second Wall: the frequency Wall
BFIER D& We can’t raise the frequency because it
consumes too much power.

No solution (see slide 5)

Third Wall: the memory Wall

AEUDE Cores'cannot access data as'fast as they
compute on them.

Also happens with SIMD!

CHEENDES

53

Break the Memory Wall:
The Memory Hierarchy (1/2)

The SIMD computation units do not access the
main memory directly

— Its latency is too high (>100 cycles)

They operate on a dedicated register file

— Temporal locality: accelerate neighbor calculations on
the same data

— Example of Intel Haswell: 16 registers of 256 bits each
(=4Kb)
They use the same data caches as the scalar
computation units

— Temporal locality: accelerate neighbor calculations on
the same data

— Spatial locality: accelerate neighbor calculations on
neighbor data

— Example of Intel Haswell: 32Kb (Level 1) + 256Kb (Level
2) per core

Point of view of the ISA

— Data are explicitly loaded from the main memory to
the SIMD register file

— The cache is not visible to the ISA

Main Memory

¥

Data Cache

¥

SIMD Register File

¥

SIMD Computation Unit

54

Break the Memory Wall:
The Memory Hierarchy (2/2)

The Program

» 11 Load A[0:3] to register file SIMD1

Main Memory

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

12 Load A[4:7] to register file SIMD2

Data Cache I3 Calculate SIMD3 = SIMD1 + SIMD2

i AJO All Al2 Al3 Al4 Al5 Al6 Al7
B = O R R RN T 14 Calculate SIMDA4 = SIMD3 + SIMD2

Line2

SIMD Register File The Operations We read a whole cache line instead of only
SIMD1 A[O] A[l] A[Z] A[3] I11: memory read the data (spatial Iocality of cache)

SIMD2 A[4] A[5] A[6] A[7] I11: cache read
SIMD3 B[4] B[5] B[6] B[7] 12: cache read
I3: register file read

ERNEITIE ile]aBB The second calculation does not need to read

The second instruction does not need to

access the memory (spatial locality of cache)

SIMD Computation Unit

the memory or the cache (temporal locality of

B[O] B[1] B[2] B3] 14: register file read eaister file!

C[0] C[1] C[2] D[3] 14: calculation

55

Limitations of the Memory Hierarchy
Aligned Accesses (1/3)

Most SIMD core architectures
only allow to read vectors from
cache alighed with cache lines

— The vector should start at the
beginning of a cache line

— Example: Fujitsu SPARC64 XII fx
(K Computer)

Other work with non-aligned
data, but slower

— Read non-aligned data requires
many cycles

— Example: Intel Haswell

The same limitation exists when
data is read from main memory

Data Cache

A[0] A[1] A[2] A[3]

Al4] AI5] A[6] A[7]

Aligned Access ‘_
SIMD1 = A[0:3]

Unaligned Access
SIMD1 = A[2:5]

56

Limitations of the Memory Hierarchy
Aligned Accesses (1/3)

Why hardware engineers
included such limitations ?

Because without them the hardware
would have been:
*''too expensive to design

*'“too hard (impossible) to manufacture
e ...and too easy to program for

57

Limitations of the Memory Hierarchy
Example 1 Aligned Accesses (2/3)

We consider a cache

line of 128 bits (4
integers)

int my_function(){ This should be slow
int a[32]; “@’ is in the stack, which is likely
int 1i; not to be aligned
for (i=0; 1<32; i++) al[il++;

¥ This may be slow

(e

int my_function({ a’ is not in the stack, but we don’t know if it
static int a[32];: will be aligned or not
int 1i; (note: e can also declare “a” global)
for (i=0; 1<32; i++) a[il++;

}

Solution: “align” gcc attribute

int my_function(){

» static int a[32] _attribute__((aligned(0x1000)));
int i;
for (i=0; i<32; i++) al[i]++;

}

58

Limitations of the Memory Hierarchy
. Aligned Accesses (3/3)

int my_function(){

T . . . Note:
tat t a[32][10] __attribute__((al d (0x1000 :
?n: }cj1.n a[32][10] __attribute__((aligned(0x) 2.a[0][0] = 0 % 128 bits
for (i=0; i<10; i++) &a[1][0] = 64 % 128 bits
for (j=0; j<32; i++) &a[2][0] = 0% 128 bits
al1]1[jl++; &a[3][0] = 64 % 128 bits
} (it should be 0 everywhere)
Solution: array padding
int my_function(){ Note:
static int a[32][12] __attribute__((aligned(0x1000))); &a[0][0] = 0 % 128 bits
nt 1,3; &a[1][0] = 0 % 128 bits

for (i=0; i<10; i++)
for (§=0; j<32; i++)
ali][j]++;

&a[2][0] = 0 % 128 bits
&a[3][0] = 0 % 128 bits

59

Today’s Conclusion

 Compiler can accelerate single-thread performance by raising the ILP of
programs

— Instruction Level Parallelism
* The most efficient method to do so is to use vector operations
— Also called SIMD instructions (Flynn’s taxonomy)
— Only possible if the target core architecture supports it
* The compiler is able to generate SIMD instructions from normal C code
— Two techniques today: basic block vectorization and loop vectorization
— Only if the algorithm allows it

— Sometimes we need to change to C program so that the compiler can better
understand it and generate vectors

e Still, even with SIMD we hit the memory wall
— We cannot access the memory as fast as we do SIMD calculation
— Modern architecture use cache and register files
— But those have many limitations that we need to understand
* Not everything has been said
— Another automatic vectorization method: loop pipelining

— Another restriction to automatic vectorization: memory aliasing (you may
want to check the keyword “restrict” of C)

THANK YOU VERY MUCH

