Available online at www.sciencedirect.com

SciVerse ScienceDirect Proced ia

Computer Science

PeLEes
ELSEVIER Procedia Computer Science 00 (2013) 000-000

www.elsevier.com/locate/procedia

The Eighth International Workshop on Automatic Performance Tuning, iWAPT 2013

Using Machine Learning in order to Improve Automatic SIMD
Instruction Generation

Antoine Trouvé®*, Arnaldo Cruz*®, Hiroki Fukuyama®P®, Jun Maki®, Hadrien Clarke®®,
Kazuaki Murakami®?, Masaki Arai®, Tadashi Nakahira®, Eiji Yamanakat

“Department of Informatics, ISEE, Kyushu University, Japan
b Institute of Systems, Information Technologies and Nanotechnologies, Japan
¢ Fujitsu Laboratories Ltd, Japan
4 Fyjitsu Ltd, Japan

Abstract

Basic block vectorization consists in extracting instruction level parallelism inside basic blocks in order to generate SIMD
instructions and thus speedup data processing. It is however a double-edged technique, because the vectorized program may
actually be slower than the original one. Therefore, it would be useful to predict beforehand whether or not vectorization
could actually produce any speedup. In this article, we propose to do so by using a machine learning technique called support
vector machine. We consider a benchmark suite containing 151 loops, unrolled with factors ranging from 1 to 20. We do our
prediction offline after as well as before unrolling. Our contribution is threefold. First, we manage to predict correctly the
profitability of vectorization for 70% of the programs in both cases. Second, we propose a list of static software characteristics
that successfully describe our benchmark with respect to our goal. Finally, we determine that machine learning makes it
possible to significantly improve the quality of the code generated by Intel Compiler, with speedups up to 2.2 times.

Keywords: Machine Learning, Support Vector Machine, Compiler Optimization, Vectorization, SIMD

1. Introduction: Problem Definition

Single Instruction Multiple Data (SIMD) is a paradigm which enables to dramatically raise the peak per-
formance of processors as well as their power efficiency. This is particularly important in high performance
computing and embedded systems, in which higher performance is required within a constant power envelope.
For short vector sizes (up to 8 or 16), software engineers can rely on vendor compilers (e,g. Intel Compiler) for
automatically generating SIMD instructions: this is called automatic vectorization.

In this paper, we focus on one automatic vectorization technique called automatic-basic-block vectorization,
referred to as ABBYV in the rest of this paper. ABBV consists in leveraging the inherent instruction-level par-
allelism (ILP) inside basic blocks in order to generate SIMD instructions. The reader should keep in mind that
ABBYV is different from loop vectorization' and software pipelining, not considered in this paper [11]. ABBV is
carried out in the compiler’s backend and mainly relies on pattern matching. The quality of the results greatly
depends on the input to the backend, that is, basic blocks should exhibit enough ILP. The amount of ILP is not

*Corresponding author. Tel.: +81-92-852-3460 ; fax: +81-92-852-3465; e-mail: trouve @isit.or.jp
IThe reader should further notice that automatic vectorization is equivalent to loop unrolling followed by ABBV.

Antoine Trouvé, Arnaldo Cruz et al. | Procedia Computer Science 00 (2013) 000-000

only an inherent property of the compiled program but also it is greatly affected by the front and middle ends
of the compiler, for instance by unrolling loops. Still, sometimes no benefit can be obtained by using vector in-
structions and it may be more advantageous to only use traditional scalar instructions. This may happen because
vector instructions in modern processors often involve some overheads like data packing and unpacking or very
slow access to unaligned data in the memory subsystems. Hence, compilers that carry out ABBV (we call them
vectorizing compilers) should be able to: (1) not vectorize if it is not profitable, that is, if the execution time of a
program compiled with ABBV is higher than the same without it, and (2) transform the code ahead of the backend
in order to feed the best possible input to the ABBV optimizer. We refer to these properties as P1 and P2 in the
remainder of this paper.

However, modern compilers are far from optimal with respect to both P1 and P2. Let us consider Intel Com-
piler, which is well known for the high quality of its output. We report in section 4 that 44% of the programs
vectorized by Intel Compiler using only ABBV are slower than without vector instructions. This blatantly shows
its failure with respect to P1. Moreover, works from various teams at University of Illinois, USA [2], or INRIA,
France [7], have shown that it is also weak with respect to P2 even on simple examples?. In this paper, we focus on
one code transformation: loop unrolling. We have measured that if we do not assist Intel Compiler into unrolling
the program upstream, it fails to generate profitable vectors for 90% of our benchmarks. This occurs despite the
fact that there exists an unroll factor that allows profitable vectorization for 45% of it.

In this paper, we propose to determine ahead of the backend whether or not a program can be profitably
vectorized downstream by the ABBV optimizer, the Intel Compiler in our case. To do so, we utilize the support
vector machine (SVM) learning algorithm. We carry out two experiments that differ in their inputs and that
address P1 and P2 respectively (see section 4.3). First, we consider a program after being transformed in order to
reproduce the situation encountered in the backend of a vectorizing compiler, when it decides whether or not to
vectorize. Second, we consider the program before being transformed, as a middle-end would do before deciding
which code transformation to apply. In the remaining of this paper we will often refer to these experiments simply
as Expl and Exp2, respectively. We were able to obtain an accuracy of approximatively 70% for both, which is
far above the current capabilities of the Intel Compiler. Our success not only comes from the power of SVM, but
also from the software characteristics we consider in order to describe the input programs.

This paper is organized as follows. First we justify our choice of using machine learning in order to predict
the profitability of vectorization (section 2), before explaining how we do so (section 3). Next, we present and
analyze our experimental results (section 4). We conclude by presenting the software features that describe the
input programs (section 5), before exploring related works that use machine learning in the context of program
optimization (section 6).

2. Why Machine Learning ?

Vectorizing compilers should be as good as possible with respect to properties P1 and P2, described in section
1. P1 can be decided by actually running the program and discarding vectorization it proves not to be profitable.
This would however obviously require too much time. Compilers use heuristics inside the backend instead. In
order to address P2, modern compilers often leverage some feedback from the backend to the middle-end. This
however complicates the implementation of compilers and may initiate some time-consuming back-and-forth
communications inside the compiler. As a consequence, compiler designers tend to favor heuristics for P2 as well,
which are implemented straight inside the middle-end. In summary, modern compilers tend to use heuristics to
tackle both P1 and P2. However, this approach behaved poorly for our benchmarks (see section 4.2). Indeed,
a vectorizing compiler is a complex piece of software whose behavior is very hard to predict, even for its own
designers®. In this context, the design of heuristics to predict the profitability of vectorization amounts to dark
magic.

In this paper, we decide to acknowledge this situation and we regard the compiler as a black box. We merely
consider its inputs and outputs, and try to determine if we could guess some properties from them. This relates

2These works consider all kinds of vectorization, not only ABBV
3The reader may want to take a look at, for example, GCC’s mailing list to verify this assertion

Antoine Trouvé, Arnaldo Cruz et al. | Procedia Computer Science 00 (2013) 000-000

A a) Linearly separable data A b) Non-linearly separable data
° *
° ° L
°
° &Margin * ° ° *
° °
°
° * ° °
* * *) *
*
x ° N °
5 * A kernel can :!) *
N * transform the data < *
2 x ¥ * to make it linearly * *
iy * separable. i >
Feature 2 Feature B

Legend Y / @ Classes of data

Fig. 1. Lineary and non-lineraly separable data (resp. a and b, from left to right). The former can be separated by an SVM. The latter can be
made linearly separable by means of kernels. The two kinds of shapes (circle, star) symbolize two classes of data.

to a problem of pattern recognition. The common way to solve such problem is to use machine learning [10] and
this has motivated our approach. In this work, the output of the machine learning fabric is a binary value that
corresponds to whether or not vectorization would be profitable. This is a classification problem in which we have
to discriminate between two classes (profitable and non profitable). Support vector machine (SVM) is a natural
approach to solve such a problem [10] and in consequence we focus on it.

3. Our Approach

We give in section 3.1 a short introduction on support vector machines (SVM). We will then explain how we
use SVMs in section 3.2 in order to predict the profitability of vectorization for both Expl and Exp2 (respectively
after and before transformation). Readers familiar with SVM may directly skip to section 3.2.

3.1. Introduction to Support Vector Machines (SVM)

This section informally describes support vector machine (SVM) in general, and how it can be used to solve
non-linear binary classification problems.

3.1.1. Informal Definition of SVM

An SVM is a type of linear classifier called maximum margin classifier. It is a decision machine, that is, it
outputs a single binary value which represents one of two classes. This contrasts with other machine learning
algorithms, such as neural networks, that output a continuous value that corresponds to the probability for the
input to satisfy a given property. SVM can also be combined to perform multiclass classification, meaning the
prediction of more than two classes.

In an n-dimension space, let us consider a set of data that may be of two classes, 0 or /. An SVM is a function
that takes into input the coordinates of the data in the space and outputs its class:

SVM : R" +— {0, 1} (1)

To do so, it simply determines the position of the data relatively to an hyperplane. The equation of the hyperplane
is determined by solving an optimization problem on its coefficients using training data: this is the training phase.
During the training phase the solver endeavors to maximize the margin between the training data of both classes®.
This situation is illustrated in figure 1 a for two dimensions. Each dimension is called a feature and is a number
that describes the input. Typical SVM problems use more than two features. For example, we utilize 12 features

4 A rigorous definition of the margin can be found in Christopher M. Bishop’s reference book [10]

Antoine Trouvé, Arnaldo Cruz et al. | Procedia Computer Science 00 (2013) 000-000

in our experiments (please refer to sections 3.2 and 5). The choice of features is very important and constitutes
one of the main challenges of using SVM. On the figure, the reader should further notice the presence of a circle
in the middle of the stars; this does not prevent the SVM from finding an acceptable (that is, highly likely) frontier
between both classes: SVM are said to be Bayesian classifiers.

The function defined by a trained SVM is called the model. The quality of the model is its propensity to
successfully predict the class of new inputs after training. It is often assessed using its accuracy on data different

from the training data:

correct predictions
accuracy(model) = 2
uracy() number of data samples @

When using SVM, we prepare a set of data vectors which include both the features and the expected class
(that is, both the inputs and the output of the SVM). We call it the examples dataset. A part of the set is used
for training, the remaining for testing to compute the accuracy. We call these sets the training set and the test
set, respectively. To compute the accuracy, we use a technique called leave-one-out cross-validation (LOOCYV).
It consists of predicting with only one data in the test set while the others are used for training, and to repeat this
process for each data vector. In this way the model’s accuracy can be determined while training with the maximum
number of examples.

We further graphically assess the quality of our model by means of a graph called the learning curve. Two
examples of learning curves are given in figure 5. It shows the evolution of the accuracy of the model for a
growing number of example data, for several different choices of training and test sets. We train the SVM with
the training set and compute the accuracy for both the training and the test sets. For each horizontal value, we
consider 10 randomly generated sets. The lines show the average of the accuracies related to both sets in order to
show their respective tendencies. The line is expected to raise for the test set as the size of the datasets increases:
this is because the SVM is more trained and therefore smarter. On the other hand, the accuracy for the training
set should drop if the SVM does not overfit the data. Finally, both lines are expected to converge toward the same
value: this is the asymptotic accuracy of our model.

3.1.2. About Non-Linearly Separable Data

An SVM can discriminate between two classes if they are linearly separable. However, this is often not the
case. In order to deal with non-linear problems, the common approach consists in transforming the features in
order to make them fit this constraint. The transformation functions are called kernels. For instance, a kernel might
be able to transform the data of figure 1 b into the one of figure 1 a. Some kernels have already been proposed by
researchers specialized in the field. They transform the data by changing not only the meaning of the features, but
also their number. However, the understanding of the underlying mathematics is out of the scope of this paper.
Our data, presented in section 4, are not linearly separable and hence we make use such type of kernel.

The kernel type depends on the problem and should be decided case by case. In addition, these kernels often
accept tuning parameters whose choice is again up the user. Fortunately, the literature provides some choices to
start with. We rely on the approach suggested by Bishop [10]. In particular, we use the radial basis kernel and
try for its parameters the values 1 and 3, multiplied by powers of ten from 10~ to 10° in order for the model’s
accuracy to be maximized.

3.2. Using Support Vector Machines

As mentioned in section 1, we leverage SVM in order to determine the profitability of vectorization when only
considering ABBV. We define that the output 0 corresponds to a program for which vectors are not profitable, and
I otherwise. We consider two situations for which we want to determine the profitability of vectorization (Expl
and Exp2 mentioned in section 1). The inputs and outputs of both experiments are shown in figure 2. In both
cases, the output of the SVM is the same; they however differ from their inputs. Exp1l only accepts as feature the
transformed input program, while Exp2 also accepts the parameters of the transformation to apply. In this paper
we only consider loop unrolling to transform the program, hence the later boils down to the unroll factor.

In this work we select a set of 12 static, hardware-independent features to characterize the input programs
(section 5). Our experimental flow to extract these features is shown in figure 3 (see section 4.1.1).

Antoine Trouvé, Arnaldo Cruz et al. | Procedia Computer Science 00 (2013) 000-000

12 static, hardware
independent
software features.

Exp 1 | 0: the program won't profit from vectors
The Unrolled Program |$ Support Vector |$ or
| 1: the program will profit from vectors

Machine (SVM)

Not the same program !

Support Vector or

Unroll Factor Machine (SVM) | 1: the program will profit from vectors

The Original Program |:> Exp 2 : | 0:the program won't profit from vectors

One extra feature, only for Exp 2

Fig. 2. The inputs and outputs of the SVM used in both Expl and Exp2. They only differ by one extra input feature in the case of Exp2: the
unroll factor to apply on the program.

Table 1. The options fed to Intel Compilers. We use SSE3 as supported by our test machine (Intel Core2Duo Extreme Merom @2.66GHz).
With ABBV -std=c99 -O3 -fno-alias -opt-report 3 -V -vec -vec-report5 -xSSE3
Without ABBV | -std=c99 -O3 -fno-alias -no-vec

4. Experiments

We present our experimental setup in sections 4.1, 4.1.1 and 4.2, before assessing our results in section 4.3.
The software characteristics are discussed later on in section 5.

4.1. Benchmark and Scope

Compiler optimizations are more efficient when applied to programs’ hotspots, that is, innermost loop nests.
That is why we consider a benchmark suite made of simple loops, representative of how an innermost calculation
loop may look like. Our benchmark is called TSVC (which stands for test suite for vectorizing compiler), in its
version provided by Maleki et al. [2]. It is composed of 151 simple loops and has been devised to assess the
quality of compilers for vectorizing loops. In our work however, we do not consider loop vectorization; instead,
we expect to mimic this transformation by expanding it into (1) loop unrolling and (2) ABBV. That is why we
consider not only the 151 loops that constitute TSVC, but also the same with the innermost nest unrolled with a
factor ranging from 2 to 20. The resulting benchmark counts 3020 programs (151 X 20).

The programs are compiled into executables using Intel Compiler with and without ABBYV, using the com-
pilation options shown in table 1 (please refer to the experimental flow on figure 3). For Intel Compiler not to
unroll, vectorize or pipeline loops, we annotate the innermost loops with the corresponding pragmas: nounroll,
novector and noswp. The host machine is an Intel Core2Duo (Merom) at 2.66GHz, that supports up to SSE3
instruction set extension.

4.1.1. Preparation of Data and Experimental Flow

Our experimental flow is divided into two steps: the generation of known data and the training/validation of
the SVM. The flow to generate the former is detailed in figure 3. It consists of 3 steps: (1) we prepare, compile
and execute our benchmark with and without ABBV; (2) we determine the profitability of vectorization (3) we
measure the software characteristics for the benchmark. The flow relies on three tools: an innermost loop unroller,
a feature extractor, and the vendor compiler. For the first, we use a tool called PIPS?. For the third, we use the Intel
Compiler (see section 4.2). For the second, we measure by means of custom tools the characteristics of programs

3Online: http://pips4u.org/

Antoine Trouvé, Arnaldo Cruz et al. | Procedia Computer Science 00 (2013) 000-000

TSVC Kernel '—»

A4

Unroller of
innermost nests

Feature Extraction
(12 features,
IR /AST Level)

Vendor Compiler
(without |
vectorizaion)

Non-Vectoriz
Kernel

Feature Extraction
(12 features,
IR /AST Level)

Execution

Vendor Compiler
(with >
vectorizaion)

Legend

Output o
the flow y

y y Vectorizatio
Features fol Features fol | Data ‘j | Tool | Profitability
Exp2 Exp1

(yes/no)
Fig. 3. Our experimental flow to build our training and test sets. The outputs of the flow are fed to the SVM. The reader should notice that the
features fed to Expl and Exp2 consists of the same items, but they differ from the timing of the flow they are extracted at (resp. before and
after unrolled).

at two abstraction levels: LLVM’s intermediate representation and Clang’s abstract syntax trees®. We refer to both
as IR and AST respectively.

After preparing the data, we use the SVM as explained in section 3.2: (1) we divide the examples dataset into
the training set and the test set (respectively 80% and 20% of the initial set); (2) we train the SVM with the training
set; (3) we assess the quality of our model by computing the LOOCYV accuracy and by plotting the learning curve.
To implement these experiments, we use libsvm’, a stable and free library for SVM.

4.2. Our Baseline

We compare our results against two baselines. The first one is Intel Compiler alone (see details below).
The second one is the exact same experiments as the ones described in section 4.1.1, but using nearest neighbor
(NN) instead of SVM. NN is a simple machine learning technique that considers for prediction the vectorization
profitability of the closest training data with respect to the Euclidian distance in the space of features.

We compare against Intel compiler alone because it is considered by the community as one of the brightest
available vendor compiler. With respect to P1, it has a success rate of 56%. This number is the ratio of profitable
vectorization among the examples dataset used in section 4.3; we consider all the kernels and all the unroll factors,
and Intel Compiler has unrolling, loop pipelining and loop vectorization off.

With respect to P2, it is impossible to reproduce Exp2 with Intel Compiler. Instead, we consider its success
ratio to profitably generate SIMD instructions when it is possible. We consider the 151 non-unrolled programs, and
we activate unrolling in Intel Compiler (by removing the nounroll pragmas). By doing so, we ask Intel Compiler
to figure out by itself a correct transformation to apply (including unrolling) in order to generate profitable vectors.
It succeeds for 13 programs. However, as explained in section 4.3, it is possible to find an unroll factor that enables
profitable vectorization for 63 programs. Therefore, its success rate is 20.63% (13/63).

4.3. Experimental Results

First of all, let us take a look at figure 4 a. It plots the number of times that vectorization was profitable for
each benchmark. This graph confirms that our data are not skewed. Further analyses show that the ratio of the
execution time without vectors and the same with vectors ranges from 0.46 to 39.25. In other words, ABBV may
provide up to 39.25 time speedups, but failing to recognize non-profitable ABBV may slow down the compiled
program up to 2.2 times (0.46~' = 2.2). The latter occurs for the program 5716 with an unroll factor of 2.

We plot the accuracy of our method against the baselines in figure 4 b. We use LOOCYV as explained in section
3.1. The prediction accuracy for Expl by using SVM is almost 70%. This is significantly better than the 56% of

5Online: respectively http://www.llvm.org and http://clang.llvm.org
7Online: http://www.csie.ntu.edu.tw/ cjlin/libsvm/

Antoine Trouvé, Arnaldo Cruz et al. | Procedia Computer Science 00 (2013) 000-000

20 80 T6g8 68.59
c 18 70 63.55 62.83
'§ 16 60 | 56
s R
§ 14 > 50
3 12 g 40
21 830 1
ﬁ 8 <20
g6 10
a 4
=, - | | 07
0 [Th [II P) Y Y Y I [T A T
TSVC Kernels (one bar per kernel) Expl Exp2
a) Vectorization profitability for our benchmark b) Prediction accuracy
Fig. 4. a) Number of times the vectorization was profitable for each program; b) Our prediction accuracy
a) Expl b) Exp2
100 100
— Training set — Training set
90 — Test set 90 — Test set
X X
% 2 sol
o e § i
o F £ i ©°
° 19o% 8 IO = — it lss5%
S ° 9 ‘B EnEEEEERE IS
B S S g i LI o
5 5 60 &
g g :
o x 0 o x B
50 501 ~
405 500 1000 1500 2000 2500 3000 405500 1000 1500 2000 2500 3000
Examples dataset size (training + test) Examples dataset size (training + test)

Fig. 5. Learning curves for Expl and Exp2 (resp. a and b, from left to right).

Intel Compiler (labeled icc in the plot). In particular, the SVM manages to correctly decide against vectorizing
for the program s/16 with an unroll factor of 2, thereby providing a speedup of 2.2. Moreover, we achieve a
similar, high precision accuracy in the case of Exp2. This is remarkable because we solve in Exp2 a problem more
complex than in Expl. No number is given for Intel Compiler for the reasons explained in section 4.2. Still, we
can compute the success of SVM at finding at least one profitable vectorization for each program when possible:
it is far above Intel Compiler at 73.01% (against 20.63%).

Figure 4 b further plots the prediction accuracy using NN: 63.55% and 62.83% respectively. These numbers
are under those of SVM, but very close. This is coherent with the results published by Stephenson et al. [1].
Moreover, NN has the advantage over SVM of being a simpler algorithm. Therefore we believe there may be
situations where it is preferable over SVM. Still, SVM achieves more than 5% better accuracy and it is the most
successful technique in our experiments.

Figure 5 plots the learning curves for both Expl and Exp2 (from left to right). Please refer to section 3.2
for more information on how to interpret these graphs. The profile of the curve is ideal, as the accuracy for
the testing and the training data are actually converging towards 70.5% and 68.5%, respectively. The maximum
average accuracies measured for the test sets are respectively 68% and 67%®. These learning curves illustrate the
convergence of our model and its high accuracy, that is, its high quality. In other words, we have shown that SVM
can be successfully used to predict the profitability of vectorization on TSVC, and can be useful to address both
P1 and P2.

5. About Software Characteristics

In this section, we present the software characteristics we used to model the benchmark to feed the SVM.
There are several ways to classify the types of software characteristics. First, they may be measured statically

8These accuracy numbers are different (yet very close) from the ones computed using LOOCYV, because the method to obtain them is
different.

Antoine Trouvé, Arnaldo Cruz et al. | Procedia Computer Science 00 (2013) 000-000

from sources, or dynamically at runtime. While the second makes it possible to gather far more information, it
requires to actually execute the program: this is not something we can afford inside a compiler for obvious time-
related constraints. Software characteristics may further be hardware dependent and hardware independent. The
former suffers from lack of portability: we may rely on some hardware counters on a given machine that is not
available on another one, for example because of differences in micro-architecture. For this reason we favor the
latter, and our results in section 4.3 show that this is enough. In conclusion, we consider only static, hardware
independent software characteristics.

We choose the characteristics empirically, while observing the behavior of Intel Compiler with our benchmark.
At the end we have retained 12 of them; 6 of which are extracted at AST level, and 6 at IR level (see section 4.1.1).
These characteristics constitute features of the SVM, together with the unroll factor for Exp2. They are detailed
one by one in table 2, and plotted by pairs in figure 6. When more than one array is accessed in the innermost
loop, AST2 and AST3 are measured for each arrays access, then we consider as a software characteristics their
arithmetic mean (a real number between 0 and 1). IR2 and IR4 rely on the prediction of the dynamic behavior
of our program provided by LLVM. This is convenient as it uses some placeholder when the values can not be
computed. IR6 should be understood as a rough estimation of the number of registers consumed by our loop.
Finally, in order to determine AST1, we not only analyze the for statement, but also the array indexes for a
consistent, constant multiplier of the induction variable.

In order to further assess the amount of redundancy in our set of features, we have run principal component
analysis on the set of known data presented in section 4.3. The results (not detailed here) show that the amount of
variance is loosely concentrated, and that it requires half of the components to express 80% of it: the information
is relatively already well spread into our original set of features. In other words, all our features are relevant to
help the SVM to carry out accurate predictions.

6. Related Work: Machine Learning and Compilation

Using machine learning to improve compilers is no breakthrough, and the literature already contains several
works that apply support vector machine (SVM) [1, 5], nearest neighbor (NN) [1, 13], artificial neural networks
(ANN) [6], and logistic regression [12]. They however make different types of predictions: Stephenson et al
[1], Park et al. [5] and Agakov et al. [13] determine parameters of code optimizations; Kulkarni et al. [6] order
optimization passes in the middle end; Pekhimenko et al. [12] use machine learning to focus on search algorithms.

The work from Stephenson et al. [1] is the closest from ours. It uses multiclass classification’ to determine for
each program the unroll factor that yields the best performance. Their benchmark consists of 2500 loops extracted
from several well-known benchmarks targeted at high-performance computing as well as embedded computing.
They leverage both SVM and NN, and manage to correctly predict the best unroll factor with an accuracy of 65%
and 62%, respectively. This proves to be far better than their baseline, Open Research Compiler'®. These numbers
are very close from the ones we obtain in section 4.3. The reason may be because they focus on the unroll factor
as we do, and because they also consider only static software characteristics. Our work is still different from this
one for two reasons. First the set of characteristics we consider is smaller than, and not included into theirs (see
section 5). Second, we predict the profitability of vectorization instead of the best unroll factor. This has several
fundamental consequences on the way we manipulate SVM. Kulkarni et al. [6] use machine learning to tackle
the complex problem of the ordering of optimization techniques. They model an optimization scenario using a
Markov process; then they construct optimization scenarios iteratively, one optimization technique at a time, using
ANN at each step. They apply their method to the just-in-time compiler of a Java virtual machine, and achieve to
reduce the execution time of compiled programs by up to 20%.

Our work, as well as all the previously detailed ones, endeavors to improve the quality of the output of the
compiler by reducing the execution time of the compiled programs. From this point of view, the works from
Agakov et al. [13] and Pekhimenko et al. [12] are original. They utilize machine learning in order to reduce the
compilation time, that is, the execution time of the compiler itself. The objective of Agakov et al. is to reduce the

% As opposed to binary classification
10Now called Open64. Online: http://www.open64.net/

Antoine Trouvé, Arnaldo Cruz et al. | Procedia Computer Science 00 (2013) 000-000

time required to find the best optimization sequence to apply to a given program. They adopt a technique based
on NN to bias an existing search algorithm (random or genetic) and they manage to reduce the search time by one
order of magnitude. On the other hand, Pekhimenko et al. [12] use logistic regression to determine the parameters
of optimization techniques inside a fixed optimization scenario, with the aim of leveraging the fast execution time
of logistic regression compared to the heuristics implemented into a commercial vendor compiler. They manage to
reduce the compilation time by two orders of magnitude while at the same time slightly improving the execution
time. The originality of our work lies on its target: we aim at predicting the profitability of vectorization. This is
the first work to do so to best of our knowledge. It is therefore complementary to the related work, and can be use
side-by-side in order to improve traditional compilers that do not use any machine learning.

7. Concluding Discussion

In this paper, we use SVM to predict the profitability of automatic basic-block vectorization for Intel Compiler
on TSVC, a benchmark made of 151 simple yet representative loops, unrolled by a factor ranging from 1 to 20.
We achieve a prediction accuracy of about 70%, even before actually unrolling the loops. This technique may
be useful in compilers in two ways. First, it can enable the compiler to avoid generating vectors that actually
slow down the program; this often happens with the Intel Compiler (44% of our benchmarks). Second, it can
allow the compiler to better predict the existence of profitable unroll factors in the middle-end, as Intel Compiler
fails to do in 79.37% of the programs of our benchmark. This is important because depending on the unroll factor,
vectorization may provide up to 39 times speedup according to our measurements (benchmark vpvzs with an unroll
factor of 20).

We however see several limitations in our approach. First, support vector machines require fine tuning espe-
cially with respect to the kernels, and wrong assumptions may easily lead to poor predictions. Second, the choice
of the set of software characteristics is critical and depends on the problem we are trying to solve. If we don’t have
enough features or if they are not representative enough, we are likely to obtain low accuracy; the same stands if
we have too many software characteristics because the more the features to feed to the SVM, the more the number
of training examples needed. This leads us to the main bottleneck of our approach: we need for training many
benchmark programs, although they are often hard to find.

Still, our results show that machine learning makes it possible to significantly improve the quality of the code
generated by Intel Compiler: we have measured speedups up to 2.2 times by successfully preventing it to carry
out unprofitable vectorization. Some challenges remain, but we are eager to tackle them in the near future.

References

[1] M. Stephenson and S. Amarasinghe: Predicting unroll factors using supervised classification, in International symposium on code gener-
ation and optimization, pp. 123-134, March 2005

[2] S.Maleki et al.: An evaluation of vectorizing compilers, Parallel Architecture and Compilation Techniques (PACT), pp. 372-382, October
2011

[3] L. Van Ertvelde and L. Eeckhout, Benchmark synthesis for architecture and compiler exploration, International Symposium on Workload
Characterization, pp. 1-11, December 2010

[4] S. Kamil and A. Fox, Bringing parallel performance to Python with domain-specific selective embedded just-in-time specialization, /0th
Python for Scientific Computing Conference, 2011

[5] E. Park et al., Predictive modeling in a polyhedral optimization space, International Symposium on Code Generation and Optimization
(CGO), pp. 119-129, April 2011

[6] S. Kulkarni and J. Cavazos, Mitigating the Compiler Optimization Phase-Ordering Problem using Machine Learning, OOPSLA, 2012

[7] M.-W. Benabderrahmane et al., The polyhedral model is more widely applicable than you think, ETAPS International Conference on
Compiler Construction (CC’2010), pp. 283-303, March 2010

[8] K. Hoste and L. Eeckhout, Microarchitecture-independant workload characterization, MICRO, pp. 63-72, May / June 2007

[9] K. Hoste, Analysis, Estimation and Optimization of Computer System Performance Using Machine Learning, PhD Thesis, Ghent Uni-
versity, September 2010

[10] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

[11] R, Allen and K. Kennedy, Optimizing Compilers for Modern Architectures, Morgan Kaufmann, 2002

[12] G, Pekhimenko and A. D. Brown, Efficient program compilation through machine learning techniques, International Workshop on
Automatic Performance Tuning (iWAPT), October 2009

[13] F. Agakov et al., Using machine learning to focus iterative optimization, International Symposium on Code Generation and Optimization
(CGO), pp. 295-305, March 2006

Antoine Trouvé, Arnaldo Cruz et al. | Procedia Computer Science 00 (2013) 000-000

Table 2. The software characteristics we consider
Identifier = Level = Range Description

ASTI1 AST N The increment of the innermost for loop

AST2 AST {0, 1} Will the address of the first access to the array be always aligned with the machine’s vector size ?
AST3 AST {0, 1} In array accesses, is the induction variables involved in the last dimension is the one of the innermost loop ?
AST4 AST N Number of array accesses in the body of the loop

ASTS AST N The number of arrays accessed inside the loop

AST6 AST {0, 1} Do the benchmark involve any restrict keyword ?

IR1 IR N The size of the dataset

1IR2 IR N Estimation of the dynamic instruction count

1IR3 IR N The depth of the innermost loop

IR4 IR N The estimated trip-count of the innermost loop

IR5 IR N Number of IR statements in the innermost loop

IR6 IR N The number of SSA variables used in the innermost loop

10 00 08 10 0 o8 00 00 04 08 0.0e40d 1.0e+18 0 20000 50000 0 500 1000
L L1 PRI

AST1

LI bz |
[eoeoa eE0)

soa®®
X

S
G

]
2
g

L
v omug

°
cenocacoca o

°
AST2 o poomD

J
- | A= |
|
%

ooa®d
B85 a 500 GRoaD
e 0e B

AST3

B g
§ o
g
- L] L] [— L) w
— — — . - v .
L 1 L] oo -] L] o o &0 oo & 0 0mo e L]
9 9o o o 0 — s o0 L) ~
=
. ASTE
2 2 cem kaopaca ecooeaccs .
- [] | 1] (—] | B 2
p— 0 o prem— o | & " ° g
-— ') o - — LX) o L L °
= A AR I S A LR) : : :
- o« o P Owml |[eE— e oo - o IR Boo © o ome o 8
— a oo o o BoD j— apo o o o coo cxoom B =
9 000 e 00 A— i ago -1 | L =
= : ML — K] : .
[] []
° 2 H
| o H
&] o IR2
- @ o o
s § & §
i aom - wollak. holgbooe) S
C (— o oon [D OO0 D |[ea— | LE-B N} [eaeooo o - -——2
o L] R & B o000 DOoOAbO S0 d & O D000&d 000 -_0 ¢ [3‘
IR3 -
-—) -1 o 2 | oo o o _g
= : — . .
.
2
" ° o ooon coecocy B ooooa oo p o IR4 - -
i - (TR) - TR i ["N N—
; g
F 2
I J IRS -
l -8
|] I 1 I lI [] a L =
Ii Jl. IR&
|] I [] l lI [] a
A

T T L i ™
0 % 4 & 0 100000 250000 00 10 24 a0 a 500 1500

0@ & w0

Fig. 6. Projection of the benchmarks in all 2D planes of characteristics (3020 dots on each graph)

