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Compiler optimization space exploration using machine learning techniques

Computer  programs  are  usually  coded  in  a  high-level  language  that  is  amenable  to  humans  but 
unsuitable for execution.  A compiler is a program used to translate the high-level code into a form that  
can be executed by the machine.  The compilation process is composed of several translation phases 
and in each phase the code transformations applied will affect program performance.  Therefore an 
essential task of the compiler is how to transform the program in a way that optimizes, or makes best 
use, of the hardware resources.  We call an optimization scenario the sequence of transformations and 
their  parameters  that  are  applied  to  a  program to  improve its  performance.   Applying the  correct 
scenario  may improve performance several  times-fold.   On the  other  hand,  applying the  incorrect 
scenario may not change the performance in the best case, or will have a significant detrimental impact  
in  the worst  case.   The  capacity  for  the compiler  to  distinguish between both  cases  is  now more 
important than ever given than single-threaded performance is stalling1.

In  order  to  improve  performance,  compilers  have  traditionally  employed  a  small  set  of  fixed 
optimization  scenarios  regardless  of  the  input  program.   In  addition,  optimizations  have  a  set  of 
parameters that control the manner in which they are applied.  These parameters are selected based on 
heuristics.   In  short,  heuristics  try  to  make best  guesses  based on rule-of-thumb and hand-crafted 
models of the target system.  However, the fixed scenarios and heuristics approach has proven to be 
inefficient as programs, compilers and hardware become more complex.  For example, we conducted 
an experiment to determine Intel's ICC, GCC and LLVM capabilities at generating profitable vector 
instructions.  This single optimization, which is called automatic vectorization, resulted in slow-down 
for 26%, 26%, and 75% of our benchmarks, respectively.

The research  objective  of  this  thesis  project  is  to  study how to  select  optimization  scenarios  and 
optimization parameters that are appropriate for a given input program, such that its execution time is 
reduced.  Because of the large number of optimization scenarios, it is not practical compile and run 
every program to select the best alternative.  Thus we need a smart way to identify those scenarios with 
greatest potential for speedup.  This we call optimization space exploration (OSE).  The hypothesis is 
that using OSE would yield much better performance that the current techniques utilized by modern 
compilers.  Concretely, we want to study how to construct accurate models that map input program 
characteristics to one or more optimization scenarios.

Our methodology for OSE uses machine learning models.  A machine learning (ML) model is trained 
with previous experiences in order to predict future outcomes.  In the compiler domain, the previous 
experience consists of a program characterization, an optimization scenario and the resulting speedup. 
The  model  is  trained  with  these  experiences  to  predict  which  scenario  to  apply  for  a  new input 
program.  Ideally, the more experiences are used during training, the more accurate the model will be in 
outputting a good optimization scenario.

There are three central challenges in using ML that are explored in this work; characterization of the 
model's input, generation of the training set, and validation of the models.

1 Peter Kogge et al. ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems. 2008. 
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/exascal e_final_report_100208.pdf.



Characterization refers to the way in which the input is encoded so that accurate predictions can be 
obtained.  This entails identifying relevant features of a program that can capture its behavior.  In our 
case we consider different high-level static software characteristics (SSC).  That is, we predict using 
sets of program characteristics that are extracted from high and intermediate level representations of the 
program.  These characteristics do not require compilation or dynamic profiling.  We also study how 
relevant are the SSC in characterizing the input program and compare the prediction accuracy when 
using the program characteristics of other works, such as the GCC Milepost project (ctuning.org). 

The second challenge in ML is generating the training set.  A good quality training set has enough 
samples covering the program characteristics and performance spaces.  In other words, we need a set of 
optimization scenarios and benchmarks that respond with both speed-ups and speed-downs depending 
on which scenario is applied.  For benchmark selection, the common method used in other works is to 
gather  training  examples  from popular  benchmarks.   We took an alternative approach and created 
benchmark  synthesizers.   This  allows  generating  many  benchmarks  with  a  better  coverage  of  the 
program characteristics and performance spaces.  Furthermore, because we have a better understanding 
of the program behavior, we can attain better insight as to which program characteristics are important 
and why programs respond to scenarios in a certain way.  To the synthesized benchmarks we apply 
optimization  scenarios  that  contain  not  only  compiler  flags,  but  also  high-level  source-to-source 
transformations to consider a wider variety of scenarios.

The third challenge in ML is validating the models.  A model is evaluated based on its accuracy, or how 
close its predictions are to the true values.  However, the accuracy of a trained model may be deceptive; 
high  accuracy  numbers  do  not  imply  that  the  model  can  be  generalized  to  other  kinds  of  input 
programs.  Causes include self-validation, in which similar examples are not removed from the training 
set  when cross-validating,  and even program bugs in  the experimentation scripts.   To prevent  this 
situation we are testing against non-synthetic benchmarks, comparing our results against models that 
output random scenarios and also models trained with random input characteristics.

The  next  phase  of  research  is  focused  on  synthesizing  more  complex  benchmarks.   Initially  we 
considered realistic,  yet simple nested loops.   Now we want to be able to generate more complex 
programs to train models that can predict beneficial scenarios for popular benchmarks such as SPEC. 
Important questions that arise include what types of benchmarks should be generated, should data sets 
be considered in the program characterization,  and which distributions to use when generating the 
program  features.   Answering  these  questions  will  make  the  application  of  machine  learning  to 
compilation more practical.


